OFFSET
1,2
LINKS
T. D. Noe, Table of n, a(n) for n = 1..100
Goran Kilibarda and Vladeta Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
G. Kreweras, Inversion des polynômes de Bell bidimensionnels et application au dénombrement des relations binaires connexes, C. R. Acad. Sci. Paris Ser. A-B 268 1969 A577-A579.
Index entries for linear recurrences with constant coefficients, signature (-195, 15886, -726290, 20952193, -403792115, 5336718048, -48588590600, 299693200656, -1195947048240, 2785165036416, -2872859996160).
FORMULA
a(n) = 63^n - 6*32^n - 15*18^n + 30*17^n - 10*14^n + 120*11^n - 120*10^n + 30*9^n - 270*8^n + 360*7^n - 120*6^n.
G.f.: x*(96368590080*x^9 + 27682953984*x^8 - 13185435000*x^7 + 774468980*x^6 + 143028190*x^5 - 19071533*x^4 + 626800*x^3 + 6970*x^2 - 470*x - 1) / ((6*x -1)*(7*x -1)*(8*x -1)*(9*x -1)*(10*x -1)*(11*x -1)*(14*x -1)*(17*x -1)*(18*x -1)*(32*x -1)*(63*x -1)). - Colin Barker, Jul 07 2013
MATHEMATICA
Table[63^n-6*32^n-15*18^n+30*17^n-10*14^n+120*11^n-120*10^n+30*9^n-270*8^n+360*7^n-120*6^n, {n, 1, 25}] (* G. C. Greubel, Oct 06 2017 *)
CoefficientList[Series[x (96368590080x^9+27682953984x^8-13185435000x^7+774468980x^6+ 143028190x^5-19071533x^4+626800x^3+6970x^2-470x-1)/((6x-1)(7x-1)(8x-1)(9x-1)(10x-1)(11x-1)(14x-1)(17x-1)(18x-1)(32x-1)(63x-1)), {x, 0, 20}], x] (* or *) LinearRecurrence[{195, -15886, 726290, -20952193, 403792115, -5336718048, 48588590600, -299693200656, 1195947048240, -2785165036416, 2872859996160}, {0, 1, 665, 106819, 10365005, 805351531, 56294206205, 3735873535339, 241600284318365, 15423235216318411, 978180744322139645}, 20] (* Harvey P. Dale, Sep 23 2023 *)
PROG
(PARI) for(n=1, 25, print1(63^n-6*32^n-15*18^n+30*17^n-10*14^n+120*11^n-120*10^n+30*9^n-270*8^n+360*7^n-120*6^n, ", ")) \\ G. C. Greubel, Oct 06 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Goran Kilibarda and Vladeta Jovovic, Apr 14 2004
STATUS
approved