login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093085
Expansion of phi(-x) / psi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions.
2
1, -2, 0, 0, 1, 2, 0, 0, -1, -4, 0, 0, 0, 6, 0, 0, 1, -8, 0, 0, 0, 12, 0, 0, -1, -18, 0, 0, -1, 24, 0, 0, 2, -32, 0, 0, 1, 44, 0, 0, -2, -58, 0, 0, -1, 76, 0, 0, 2, -100, 0, 0, 1, 128, 0, 0, -3, -164, 0, 0, -1, 210, 0, 0, 4, -264, 0, 0, 2, 332, 0, 0, -5, -416, 0, 0, -2, 516, 0, 0, 5, -640, 0, 0, 2, 790, 0, 0, -6, -968
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
eta(q^2) * eta(q^8)^6 = eta(q)^2 * eta(q^4)^2 * eta(q^8) * eta(q^16)^2 + 2 * eta(q^2) * eta(q^4)^2 * eta(q^16)^4 is equivalent to the a(4*n), ..., a(4*n + 3) results.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/2) * eta(q)^2 * eta(q^4) / (eta(q^2) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ -2, -1, -2, -2, -2, -1, -2, 0, ...].
Given g.f. A(x), then B(q) = A(q)^2 / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u * (u + 8) * (v + 4) - v^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A187154.
G.f.: Product_{k>0} (1 - x^k)^2 / ((1 - x^(4*k - 2)) * (1 - x^(8*k))^2).
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A029838(n). a(4*n + 1) = -2 * A083365(n). Convolution square is A131124. Convolution inverse is A187154.
EXAMPLE
G.f. = 1 - 2*x + x^4 + 2*x^5 - x^8 - 4*x^9 + 6*x^13 + x^16 - 8*x^17 + 12*x^21 - ...
G.f. = 1/q - 2*q + q^7 + 2*q^9 - q^15 - 4*q^17 + 6*q^25 + q^31 - 8*q^33 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2 x^(1/2) EllipticTheta[ 4, 0, x] / EllipticTheta[ 2, 0, x^2], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k)^[ 0, 2, 1, 2, 2, 2, 1, 2][1 + k%8], 1 + x * O(x^n)), n))}
(PARI) {a(n) = my(A, A2, m); if( n<0, 0, A = x + O(x^2); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = 4*A + 16*A^2 + (1 + 8*A) * sqrt(A + 4*A^2)); polcoeff( sqrt(x / A), n))}
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) / (eta(x^2 + A) * eta(x^8 + A)^2), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 20 2004, Oct 22 2007
STATUS
approved