login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093078
Primes p = prime(i) such that p(i)# - p(i+1) is prime.
3
5, 7, 11, 13, 19, 79, 83, 89, 149, 367, 431, 853, 4007, 8819, 8969, 12953, 18301, 18869
OFFSET
1,1
COMMENTS
a(19) > 22013. - J.W.L. (Jan) Eerland, Dec 19 2022
a(19) > 63317. - J.W.L. (Jan) Eerland, Dec 20 2022
EXAMPLE
3 = p(2) is in the sequence because p(2)# + p(3) = 11 is prime.
MATHEMATICA
Do[p = Product[ Prime[i], {i, 1, n}]; q = Prime[n + 1]; If[ PrimeQ[p - q], Print[ Prime[n]]], {n, 1, 1435}]
Module[{nn=1120, pr1, pr2, prmrl}, pr1=Prime[Range[nn]]; pr2=Prime[Range[ 2, nn+1]]; prmrl=FoldList[Times, pr1]; Transpose[Select[Thread[{pr1, pr2, prmrl}], PrimeQ[#[[3]]-#[[2]]]&]][[1]]] (* Harvey P. Dale, Dec 07 2015 *)
n=1; Monitor[Parallelize[While[True, If[PrimeQ[Product[Prime[k], {k, 1, n}]-Prime[n + 1]], Print[Prime[n]]]; n++]; n], n] (* J.W.L. (Jan) Eerland, Dec 19 2022 *)
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Robert G. Wilson v, Oct 25 2003
EXTENSIONS
a(16)-a(18) from J.W.L. (Jan) Eerland, Dec 19 2022
STATUS
approved