login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p = prime(i) such that p(i)# - p(i+1) is prime.
3

%I #20 Dec 20 2022 11:59:29

%S 5,7,11,13,19,79,83,89,149,367,431,853,4007,8819,8969,12953,18301,

%T 18869

%N Primes p = prime(i) such that p(i)# - p(i+1) is prime.

%C a(19) > 22013. - _J.W.L. (Jan) Eerland_, Dec 19 2022

%C a(19) > 63317. - _J.W.L. (Jan) Eerland_, Dec 20 2022

%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha107.htm">PI Pn - NextPrime (n = 1 to 100)</a>.

%e 3 = p(2) is in the sequence because p(2)# + p(3) = 11 is prime.

%t Do[p = Product[ Prime[i], {i, 1, n}]; q = Prime[n + 1]; If[ PrimeQ[p - q], Print[ Prime[n]]], {n, 1, 1435}]

%t Module[{nn=1120,pr1,pr2,prmrl},pr1=Prime[Range[nn]];pr2=Prime[Range[ 2, nn+1]]; prmrl=FoldList[Times,pr1];Transpose[Select[Thread[{pr1,pr2, prmrl}], PrimeQ[#[[3]]-#[[2]]]&]][[1]]] (* _Harvey P. Dale_, Dec 07 2015 *)

%t n=1;Monitor[Parallelize[While[True,If[PrimeQ[Product[Prime[k],{k,1,n}]-Prime[n + 1]],Print[Prime[n]]];n++];n],n] (* _J.W.L. (Jan) Eerland_, Dec 19 2022 *)

%Y Cf. A087714, A088415, A093077.

%K nonn,hard,more

%O 1,1

%A _Robert G. Wilson v_, Oct 25 2003

%E a(16)-a(18) from _J.W.L. (Jan) Eerland_, Dec 19 2022