login
A339347
Primes p such that p < (gpf((p - 1)/gpf(p - 1)))^4, where gpf(k) is the greatest prime factor of k, A006530.
1
5, 7, 11, 13, 19, 31, 37, 43, 61, 67, 71, 73, 79, 101, 131, 151, 191, 197, 211, 239, 251, 281, 311, 331, 401, 419, 421, 431, 443, 461, 463, 491, 521, 547, 571, 599, 601, 617, 647, 659, 677, 683, 727, 743, 827, 859, 883, 911, 947, 953, 967, 1013, 1093, 1103
OFFSET
1,1
COMMENTS
Inspired by A339466. See the references there.
LINKS
MAPLE
alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)):
is_a := n -> isprime(n) and n < (gpf((n-1)/gpf(n-1)))^4:
select(is_a, [$5..1150]);
PROG
(PARI) gpf(n) = if (n==1, 1, vecmax(factor(n)[, 1])); \\ A006530
isok(p) = isprime(p) && (p < (gpf((p - 1)/gpf(p - 1)))^4); \\ Michel Marcus, Dec 14 2020
CROSSREFS
Sequence in context: A045438 A176579 A154275 * A167460 A045439 A093078
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 13 2020
STATUS
approved