login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092924
Expansion of a Schwarzian ({f_{32|8}, tau} / (4*Pi)^2) in powers of q^8.
1
1, -1008, 8304, -28224, 66672, -127008, 232512, -346752, 533616, -763056, 1046304, -1342656, 1866816, -2215584, 2856576, -3556224, 4269168, -4953312, 6286128, -6914880, 8400672, -9709056, 11060928, -12265344, 14941248, -15877008, 18252192, -20603520, 22935168, -24585120
OFFSET
0,2
COMMENTS
The q-series f_{32|8} is the g.f. for A082303. This is given on page 274 of McKay and Sebbar along with equation (8.1) which gives an expression for the g.f. A(q) of this sequence. - Michael Somos, Aug 15 2014
LINKS
J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275.
FORMULA
Expansion of (21 * E_4(-q) - 16 * E_4(q^2)) / 5 in powers of q. [McKay and Sebbar, equation (8.1)] - Michael Somos, Aug 15 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 16 (t/i)^4 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 15 2014
EXAMPLE
G.f. = 1 - 1008*x + 8304*x^2 - 28224*x^3 + 66672*x^4 - 127008*x^5 + 232512*x^6 + ...
G.f. = 1 - 1008*q^8 + 8304*q^16 - 28224*q^24 + 66672*q^32 - 127008*q^40 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; E4[0] := 1; E4[q_]:= 1 +240*Sum[k^3* q^k/(1 - q^k), {k, 1, 150}]; CoefficientList[Series[(21*E4[-q] - 16*E4[q^2])/5, {q, 0, 100}], q] (* G. C. Greubel, Jul 25 2018 *)
PROG
(Sage) A = ModularForms( Gamma0(8), 4, prec=32) . basis(); A[1] - 1008*A[2] + 8304*A[3] + 66672*A[4]; # Michael Somos, Aug 15 2014
CROSSREFS
Sequence in context: A241932 A160451 A254973 * A331770 A290286 A187863
KEYWORD
sign
AUTHOR
John McKay (mckay(AT)cs.concordia.ca), Apr 18 2004
EXTENSIONS
More terms from Michael Somos, Aug 15 2014
STATUS
approved