login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092634
a(n) = 1 - Sum_{k=2..n} k*k!.
1
-3, -21, -117, -717, -5037, -40317, -362877, -3628797, -39916797, -479001597, -6227020797, -87178291197, -1307674367997, -20922789887997, -355687428095997, -6402373705727997, -121645100408831997, -2432902008176639997
OFFSET
2,1
REFERENCES
Appeared in University of Texas Interscholastic League High School Number Sense District Test, 2004.
FORMULA
Conjecture: a(n) +(-n-3)*a(n-1) +(2*n+1)*a(n-2) +(-n+1)*a(n-3)=0. - R. J. Mathar, Sep 27 2014
a(n) = 3 - (n+1)!. - Michel Marcus, Jun 07 2020
From G. C. Greubel, Jun 07 2020: (Start)
a(n) = 3 - !(n+2) + !(n+1) = 3 - A003422(n+2) + A003422(n+1).
E.g.f.: 3*exp(x) - (3 - 3*x + x^3)/(1-x)^2. (End)
MAPLE
A092634:= n-> 3-(n+1)!: seq(A092634(n), n=2..20); # G. C. Greubel, Jun 07 2020
MATHEMATICA
Table[i; 1 - Sum[n n!, {n, 2, i}], {i, 2, 20}]
PROG
(PARI) a(n) = 1 - sum(k=2, n, k*k!); \\ Michel Marcus, Jun 07 2020
(Sage) [3-factorial(n+1) for n in (2..20)] # G. C. Greubel, Jun 07 2020
CROSSREFS
Cf. A033312.
Sequence in context: A309670 A121140 A005057 * A178537 A046727 A084159
KEYWORD
sign
AUTHOR
Doug Ray (draymath(AT)iastate.edu), Apr 11 2004
STATUS
approved