login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092633
Nonprime numbers with exactly three nonprime digits.
0
100, 104, 106, 108, 110, 111, 114, 116, 118, 119, 140, 141, 144, 146, 148, 160, 161, 164, 166, 168, 169, 180, 184, 186, 188, 189, 190, 194, 196, 198, 400, 404, 406, 408, 410, 411, 414, 416, 418, 440, 441, 444, 446, 448, 460, 464, 466, 468, 469, 480, 481
OFFSET
1,1
EXAMPLE
100 is nonprime and has three nonprime digits, twice 0 and 1;
961 is nonprime and has three nonprime digits, 1, 6 and 9.
MAPLE
stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i, ans) ]; od; RETURN(anstren); end: ts_stnepf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i, ans))='false') then stpf:=stpf+1; # number of nonprime digits fi od; RETURN(stpf) end: ts_nepr_neprnt:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( isprime(i)='false' and ts_stnepf(i) = 3) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_nepr_neprnt(1000);
CROSSREFS
Sequence in context: A281149 A204582 A204583 * A213313 A204584 A108343
KEYWORD
nonn,base
AUTHOR
Jani Melik, Apr 11 2004
STATUS
approved