login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092629
Numbers that have a nonprime number of prime digits.
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 26, 28, 29, 30, 31, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 54, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88
OFFSET
1,2
EXAMPLE
24 has one prime digit 2 and their number 1 is nonprime;
235719 has four prime digits 2,3,5,7 and their number 4 is nonprime.
313 is not in the sequence as it has a prime number (2) of prime digits (3, 3). - David A. Corneth, Aug 09 2023
MAPLE
stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i, ans) ]; od; RETURN(anstren); end: ts_stpf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i, ans))='true') then stpf:=stpf+1; # number of prime digits fi od; RETURN(stpf) end: ts_nepr:=proc(n) local i, stpf, ans, ans1; ans:=[ ]: stpf:=0: for i from 1 to n do if (isprime( ts_stpf(i) )='false') then ans:=[ op(ans), i ]: fi od; RETURN(ans) end: ts_nepr(600);
MATHEMATICA
Select[Range[100], !PrimeQ[Count[IntegerDigits[#], _?PrimeQ]]&] (* Harvey P. Dale, Jan 15 2013 *)
CROSSREFS
Cf. A019546.
Sequence in context: A162421 A275164 A076499 * A246101 A241673 A258009
KEYWORD
nonn,easy,base
AUTHOR
Jani Melik, Apr 11 2004
EXTENSIONS
Edited by Charles R Greathouse IV, Aug 03 2010
STATUS
approved