login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092627
Primes with exactly two nonprime digits.
1
11, 19, 41, 61, 89, 103, 107, 113, 131, 139, 151, 163, 167, 179, 193, 197, 211, 241, 269, 281, 311, 349, 389, 421, 431, 439, 443, 463, 467, 479, 487, 509, 541, 569, 599, 607, 613, 617, 631, 643, 647, 659, 683, 701, 709, 719, 761, 769, 821, 829, 839, 859, 863
OFFSET
1,1
LINKS
EXAMPLE
11 is prime and it has two nonprime digits, twice 1;
2269 is prime and it has two nonprime digits, 6 and 9.
MAPLE
stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i, ans) ]; od; RETURN(anstren); end: ts_stnepf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i, ans))='false') then stpf:=stpf+1; # number of nonprime digits fi od; RETURN(stpf) end: ts_pr_neprnd:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( isprime(i)='true' and ts_stnepf(i) = 2) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_neprnd(4000);
MATHEMATICA
npd2Q[n_]:=Count[IntegerDigits[n], _?(!PrimeQ[#]&)]==2; Select[Prime[ Range[ 200]], npd2Q] (* Harvey P. Dale, May 12 2015 *)
CROSSREFS
Cf. A019546.
Sequence in context: A322474 A084986 A034844 * A152313 A034303 A293166
KEYWORD
nonn,base
AUTHOR
Jani Melik, Apr 11 2004
STATUS
approved