login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes with exactly two nonprime digits.
1

%I #7 May 12 2015 18:53:15

%S 11,19,41,61,89,103,107,113,131,139,151,163,167,179,193,197,211,241,

%T 269,281,311,349,389,421,431,439,443,463,467,479,487,509,541,569,599,

%U 607,613,617,631,643,647,659,683,701,709,719,761,769,821,829,839,859,863

%N Primes with exactly two nonprime digits.

%H Harvey P. Dale, <a href="/A092627/b092627.txt">Table of n, a(n) for n = 1..1000</a>

%e 11 is prime and it has two nonprime digits, twice 1;

%e 2269 is prime and it has two nonprime digits, 6 and 9.

%p stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stnepf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='false') then stpf:=stpf+1; # number of nonprime digits fi od; RETURN(stpf) end: ts_pr_neprnd:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( isprime(i)='true' and ts_stnepf(i) = 2) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_neprnd(4000);

%t npd2Q[n_]:=Count[IntegerDigits[n],_?(!PrimeQ[#]&)]==2; Select[Prime[ Range[ 200]], npd2Q] (* _Harvey P. Dale_, May 12 2015 *)

%Y Cf. A019546.

%K nonn,base

%O 1,1

%A _Jani Melik_, Apr 11 2004