login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092393
Triangle read by rows: T(n,k) = (n+k)*binomial(n,k) (for k=0..n-1).
1
1, 2, 6, 3, 12, 15, 4, 20, 36, 28, 5, 30, 70, 80, 45, 6, 42, 120, 180, 150, 66, 7, 56, 189, 350, 385, 252, 91, 8, 72, 280, 616, 840, 728, 392, 120, 9, 90, 396, 1008, 1638, 1764, 1260, 576, 153, 10, 110, 540, 1560, 2940, 3780, 3360, 2040, 810, 190, 11, 132, 715
OFFSET
1,2
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of the triangle, flattened)
FORMULA
First column = positive integers;
second column = A002378;
third column = A077414;
main diagonal (i.e., T(n,n) = (n+n)*binomial(n,n) = 2n, which is not included in this sequence) = even integers;
second diagonal = A000384.
Row sums = 1, 8, 30, 88, 230,... = A167667(n)-2n. - R. J. Mathar, Nov 02 2023
EXAMPLE
Triangle starts:
1;
2, 6;
3, 12, 15;
4, 20, 36, 28;
5, 30, 70, 80, 45;
6, 42, 120, 180, 150, 66;
...
MAPLE
A092393 := proc(n, k)
(n+k)*binomial(n, k) ;
end proc:
seq(seq( A092393(n, k), k=0..n-1), n=1..12) ; # R. J. Mathar, Nov 02 2023
MATHEMATICA
A092393row[n_]:=Table[(n+k)Binomial[n, k], {k, 0, n-1}]; Array[A092393row, 10] (* Paolo Xausa, Nov 02 2023 *)
PROG
(PARI) T(n, k)=binomial(n, k)*(n+k)
CROSSREFS
Cf. A029635.
Sequence in context: A243618 A063929 A276158 * A352793 A207901 A054619
KEYWORD
nonn,tabl
AUTHOR
Benoit Cloitre, Mar 21 2004
STATUS
approved