OFFSET
1,2
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of the triangle, flattened)
FORMULA
First column = positive integers;
second column = A002378;
third column = A077414;
main diagonal (i.e., T(n,n) = (n+n)*binomial(n,n) = 2n, which is not included in this sequence) = even integers;
second diagonal = A000384.
Row sums = 1, 8, 30, 88, 230,... = A167667(n)-2n. - R. J. Mathar, Nov 02 2023
EXAMPLE
Triangle starts:
1;
2, 6;
3, 12, 15;
4, 20, 36, 28;
5, 30, 70, 80, 45;
6, 42, 120, 180, 150, 66;
...
MAPLE
A092393 := proc(n, k)
(n+k)*binomial(n, k) ;
end proc:
seq(seq( A092393(n, k), k=0..n-1), n=1..12) ; # R. J. Mathar, Nov 02 2023
MATHEMATICA
A092393row[n_]:=Table[(n+k)Binomial[n, k], {k, 0, n-1}]; Array[A092393row, 10] (* Paolo Xausa, Nov 02 2023 *)
PROG
(PARI) T(n, k)=binomial(n, k)*(n+k)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Benoit Cloitre, Mar 21 2004
STATUS
approved