login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054619 Triangle T(n,k) = Sum_{d|k} phi(d)*n^(k/d). 6
1, 2, 6, 3, 12, 33, 4, 20, 72, 280, 5, 30, 135, 660, 3145, 6, 42, 228, 1344, 7800, 46956, 7, 56, 357, 2464, 16835, 118104, 823585, 8, 72, 528, 4176, 32800, 262800, 2097200, 16781472, 9, 90, 747, 6660, 59085, 532350, 4783023, 43053480, 387422001 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

EXAMPLE

1;

2, 6;

3, 12, 33;

4, 20, 72,  280;

5, 30, 135, 660,  3145;

6, 42, 228, 1344, 7800, 46956;

...

MAPLE

with(numtheory):

T:= (n, k)-> add(phi(d)*n^(k/d), d=divisors(k)):

seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Aug 28 2013

MATHEMATICA

T[n_, k_] := Sum[EulerPhi[d]*n^(k/d), {d, Divisors[k]}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Feb 25 2015 *)

PROG

(PARI) T(n, k) = sumdiv(k, d, eulerphi(d)*n^(k/d)); \\ Michel Marcus, Feb 25 2015

CROSSREFS

Cf. A054618, A054630, A054631, A185651 (transpose).

Main diagonal gives: A228640.

Sequence in context: A276158 A092393 A207901 * A054618 A120859 A253258

Adjacent sequences:  A054616 A054617 A054618 * A054620 A054621 A054622

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, Apr 16 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 16:17 EST 2020. Contains 338844 sequences. (Running on oeis4.)