login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092170
Sum of squares of alternating factorials : n!^2 - (n-1)!^2 + (n-2)!^2 - ... 1!^2.
1
1, 3, 33, 543, 13857, 504543, 24897057, 1600805343, 130081089057, 13038108350943, 1580312813889057, 227862219988670943, 38547925823643969057, 7561506530728353470943, 1702450746193471070529057
OFFSET
1,2
COMMENTS
The height of a regular simplex (hypertetrahedron) of dimension n and with unit length edges will be h(n)=sqrt(a(n))/n!. The contents (hypervolume) will then be V(n)=V(n-1)*h(n)/n where V(1)=1.
LINKS
FORMULA
a(n) = n!^2 - a(n-1), a(1)=1. - Charles R Greathouse IV, Oct 13 2004
EXAMPLE
a(3)=3!^2-a(2)=36-a(2);
a(2)=2!^2-a(1)=4-a(1)=3-1=3 ->
a(3)=36-3=33.
MATHEMATICA
a[n_] := Sum[(-1)^j*((n - j)!)^2, {j, 0, n - 1}]
Module[{nn=20, fctrls}, fctrls=(Range[nn]!)^2; Table[Total[Times@@@ Partition[ Riffle[Reverse[Take[fctrls, n]], {1, -1}, {2, -1, 2}], 2]], {n, nn}]] (* Harvey P. Dale, Aug 21 2016 *)
CROSSREFS
Sequence in context: A355795 A291818 A209245 * A083080 A002916 A009659
KEYWORD
easy,nonn
AUTHOR
Christer Mauritz Blomqvist (MauritzTortoise(AT)hotmail.com), Apr 01 2004
STATUS
approved