OFFSET
1,2
COMMENTS
The height of a regular simplex (hypertetrahedron) of dimension n and with unit length edges will be h(n)=sqrt(a(n))/n!. The contents (hypervolume) will then be V(n)=V(n-1)*h(n)/n where V(1)=1.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..253
FORMULA
a(n) = n!^2 - a(n-1), a(1)=1. - Charles R Greathouse IV, Oct 13 2004
EXAMPLE
a(3)=3!^2-a(2)=36-a(2);
a(2)=2!^2-a(1)=4-a(1)=3-1=3 ->
a(3)=36-3=33.
MATHEMATICA
a[n_] := Sum[(-1)^j*((n - j)!)^2, {j, 0, n - 1}]
Module[{nn=20, fctrls}, fctrls=(Range[nn]!)^2; Table[Total[Times@@@ Partition[ Riffle[Reverse[Take[fctrls, n]], {1, -1}, {2, -1, 2}], 2]], {n, nn}]] (* Harvey P. Dale, Aug 21 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Christer Mauritz Blomqvist (MauritzTortoise(AT)hotmail.com), Apr 01 2004
STATUS
approved