The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092170 Sum of squares of alternating factorials : n!^2 - (n-1)!^2 + (n-2)!^2 - ... 1!^2. 1
 1, 3, 33, 543, 13857, 504543, 24897057, 1600805343, 130081089057, 13038108350943, 1580312813889057, 227862219988670943, 38547925823643969057, 7561506530728353470943, 1702450746193471070529057 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The height of a regular simplex (hypertetrahedron) of dimension n and with unit length edges will be h(n)=sqrt(a(n))/n!. The contents (hypervolume) will then be V(n)=V(n-1)*h(n)/n where V(1)=1. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..253 FORMULA a(n) = n!^2 - a(n-1), a(1)=1. - Charles R Greathouse IV, Oct 13 2004 EXAMPLE a(3)=3!^2-a(2)=36-a(2); a(2)=2!^2-a(1)=4-a(1)=3-1=3 -> a(3)=36-3=33. MATHEMATICA a[n_] := Sum[(-1)^j*((n - j)!)^2, {j, 0, n - 1}] Module[{nn=20, fctrls}, fctrls=(Range[nn]!)^2; Table[Total[Times@@@ Partition[ Riffle[Reverse[Take[fctrls, n]], {1, -1}, {2, -1, 2}], 2]], {n, nn}]] (* Harvey P. Dale, Aug 21 2016 *) CROSSREFS Cf. A005165, A055546. Sequence in context: A355795 A291818 A209245 * A083080 A002916 A009659 Adjacent sequences: A092167 A092168 A092169 * A092171 A092172 A092173 KEYWORD easy,nonn AUTHOR Christer Mauritz Blomqvist (MauritzTortoise(AT)hotmail.com), Apr 01 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 11:59 EDT 2024. Contains 372736 sequences. (Running on oeis4.)