login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092069
Molien series for genus 2 complete weight enumerators of self-dual codes over GF(3).
0
1, 1, 1, 11, 35, 70, 278, 765, 1526, 3774, 8105, 14633, 28560, 51983, 85609, 145591, 237609, 364095, 565831, 855788, 1240383, 1808777, 2587237, 3590112, 4992854, 6844101, 9172450, 12296446, 16300139, 21235896, 27646466, 35669378, 45394358, 57699934, 72801345
OFFSET
0,4
COMMENTS
The invariant ring for a 9-dimensional group Z_4 X SP_4(3) of order 207360.
These are the coefficients of the expansion in powers of t^4, the other coefficients being zero. - Georg Fischer, Jan 24 2021
LINKS
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
Index entries for linear recurrences with constant coefficients, signature (0,1,4,0,-2,-6,-2,-2,6,7,6,-8,-8,-3,8,6,6,-3,-12,-15,0,15,12,3,-6,-6,-8,3,8,8, -6,-7,-6,2,2,6,2,0,-4,-1,0,1).
FORMULA
O.g.f.: (1 + t^4 + 6*t^12 + 30*t^16 + 57*t^20 + 207*t^24 + 565*t^28 + 1000*t^32 + 2031*t^36 + 3880*t^40 + 5804*t^44 + 8696*t^48 + 12991*t^52 + 16595*t^56 + 20527*t^60 + 25965*t^64 + 29418*t^68 + 31536*t^72 + 34772*t^76 + 35273*t^80 + 33093*t^84 + 31969*t^88 + 29068*t^92 + 23862*t^96 + 20052*t^100 + 16217*t^104 + 11369*t^108 + 7996*t^112 + 5554*t^116 + 3097*t^120 + 1642*t^124 + 930*t^128 + 350*t^132 + 104*t^136 + 51*t^140 + 9*t^144 + t^148 + t^152) / ((1-t^36)^2 * (1-t^20)^2 * (1-t^12)^4 * (1-t^8)). - Georg Fischer, Jan 24 2021
MAPLE
# (Maple code for Molien series:)
u1 := 1 + t^4 + 6*t^12 + 30*t^16 + 57*t^20 + 207*t^24 + 565*t^28 + 1000*t^32 + 2031*t^36 + 3880*t^40 + 5804*t^44 + 8696*t^48 + 12991*t^52 + 16595*t^56 + 20527*t^60 + 25965*t^64 + 29418*t^68 + 31536*t^72 + 34772*t^76 + 35273*t^80
+ 33093*t^84 + 31969*t^88 + 29068*t^92 + 23862*t^96 + 20052*t^100 + 16217*t^104 + 11369*t^108 + 7996*t^112 + 5554*t^116 + 3097*t^120 + 1642*t^124 + 930*t^128 + 350*t^132 + 104*t^136 + 51*t^140 + 9*t^144 + t^148 + t^152;
u2 := (1-t^36)^2*(1-t^20)^2*(1-t^12)^4*(1-t^8); MS := u1/u2;
seq(coeff(series(MS, t, 4*n+3), t, 4*n), n=0..35);
CROSSREFS
Sequence in context: A118554 A348845 A233546 * A103115 A003777 A222512
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 30 2004
STATUS
approved