OFFSET
0,2
COMMENTS
X values of solutions to the equation X^2 + (X+49)^2 = Y^2.
Consider all Pythagorean triples (X,X+49,Z) ordered by increasing Z; sequence gives X values.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,6,-6,0,0,0,-1,1).
FORMULA
a(n) = a(n-1) +6*a(n-5) -6*a(n-6) -a(n-10) +a(n-11) with a(0)=0, a(1)=11, a(2)=35, a(3)=56, a(4)=104, a(5)=147, a(6)=204, a(7)=336, a(8)=455, a(9)=731, a(10)=980. - Harvey P. Dale, Aug 19 2011
G.f.: x*(11+24*x+21*x^2+48*x^3+43*x^4-9*x^5-12*x^6-7*x^7-12*x^8 -9*x^9)/( (1-x)*(1-6*x^5+x^10)). - Colin Barker, Apr 09 2012
MATHEMATICA
LinearRecurrence[{1, 0, 0, 0, 6, -6, 0, 0, 0, -1, 1}, {0, 11, 35, 56, 104, 147, 204, 336, 455, 731, 980}, 40] (* Harvey P. Dale, Aug 19 2011 *)
PROG
(PARI) x='x+O('x^30); concat([0], Vec(x*(11+24*x+21*x^2+48*x^3+43*x^4 -9*x^5-12*x^6-7*x^7-12*x^8 -9*x^9)/((1-x)*(1-6*x^5+x^10)))) \\ G. C. Greubel, May 07 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(11+24*x+21*x^2+48*x^3+43*x^4-9*x^5-12*x^6 -7*x^7 -12*x^8 -9*x^9)/( (1-x)*(1-6*x^5+x^10)))); // G. C. Greubel, May 07 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, May 07 2006
STATUS
approved