login
A091293
a(n) is the smallest x for which the following quotient is an integer: (sigma(x) + ... + sigma(x+n-1))/sigma(x+(x+1)+ ... + (x+n-1)), i.e., sum(sigma(j))/sigma(sum(j)) for n terms summed up was integer.
2
1, 1, 424, 7, 13980, 2, 805675056, 15662957033, 7, 42, 48957
OFFSET
1,3
COMMENTS
Some other values: a(15)=298, a(19)=97.
a(12) > 8*10^10. - Giovanni Resta, May 07 2017
EXAMPLE
n=6: sigma(2) + sigma(3) + ... + sigma(7) = 3 + 4 + 7 + 6 + 12 + 8 = 40 = sigma(2 + 3 + ... + 7) = sigma(27) = 1 + 3 + 9 + 27 = 40; quotient = 1.
MATHEMATICA
g[x_, k_] := Apply[Plus, Table[sg[x+j], j, 0, k-1}]]/ sg[Apply[Plus, Table[x+j, j, 0, k-1}]]] Table[fla=1; Do[s=g[n, h]; If[IntegerQ[s]&&Equal[fla, 1], Print[{n, h}]; fla=0], {n, 1, 10000000}], {h, 1, 6}]
CROSSREFS
KEYWORD
hard,nonn
AUTHOR
Labos Elemer, Feb 17 2004
EXTENSIONS
a(7)-a(11) from Giovanni Resta, May 07 2017
STATUS
approved