login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091292
Numbers k such that the quotient (sigma(k) + sigma(k+1) + sigma(k+2))/sigma(3*k+3) is an integer.
1
424, 2134, 20154, 23954, 27344, 27584, 37414, 45154, 74874, 89654, 503810, 1327292, 1910174, 8976614, 13954744, 17386316, 20920074, 22436224, 22937784, 23253068, 29705192, 70524530, 78617972, 81607504, 85815924, 94163306, 107161784, 114195964, 115314294, 149806904
OFFSET
1,1
COMMENTS
Sum(sigma(j))/sigma(Sum(j)) for 3 terms summed up is an integer.
LINKS
MATHEMATICA
sg[n_] := DivisorSigma[1, n]; g[x_, k_] := Apply[Plus, Table[sg[x + j], {j, 0, k - 1}]] / sg[Apply[Plus, Table[x + j, {j, 0, k - 1}]]]; Do[s = g[n, 3]; If[IntegerQ[s], Print[n]], {n, 1, 10000000}]
Select[Range[600000], IntegerQ[(DivisorSigma[1, #]+DivisorSigma[1, #+1]+DivisorSigma[1, #+2])/DivisorSigma[1, 3#+3]]&] (* The program generates the first 11 terms of the sequence. *) (* Harvey P. Dale, Dec 23 2024 *)
PROG
(PARI) isok(n) = denominator((sigma(n) + sigma(n+1) + sigma(n+2))/sigma(3*n+3)) == 1; \\ Michel Marcus, Jul 29 2017
KEYWORD
nonn,changed
AUTHOR
Labos Elemer, Feb 17 2004
EXTENSIONS
a(15)-a(26) from Donovan Johnson, Feb 01 2009
a(27)-a(30) from Amiram Eldar, Mar 25 2024
STATUS
approved