OFFSET
1,1
COMMENTS
Sum(sigma(j))/sigma(Sum(j)) for 3 terms summed up is an integer.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..58
MATHEMATICA
sg[n_] := DivisorSigma[1, n]; g[x_, k_] := Apply[Plus, Table[sg[x + j], {j, 0, k - 1}]] / sg[Apply[Plus, Table[x + j, {j, 0, k - 1}]]]; Do[s = g[n, 3]; If[IntegerQ[s], Print[n]], {n, 1, 10000000}]
Select[Range[600000], IntegerQ[(DivisorSigma[1, #]+DivisorSigma[1, #+1]+DivisorSigma[1, #+2])/DivisorSigma[1, 3#+3]]&] (* The program generates the first 11 terms of the sequence. *) (* Harvey P. Dale, Dec 23 2024 *)
PROG
(PARI) isok(n) = denominator((sigma(n) + sigma(n+1) + sigma(n+2))/sigma(3*n+3)) == 1; \\ Michel Marcus, Jul 29 2017
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Labos Elemer, Feb 17 2004
EXTENSIONS
a(15)-a(26) from Donovan Johnson, Feb 01 2009
a(27)-a(30) from Amiram Eldar, Mar 25 2024
STATUS
approved