login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090826
Convolution of Catalan and Fibonacci numbers.
6
0, 1, 2, 5, 12, 31, 85, 248, 762, 2440, 8064, 27300, 94150, 329462, 1166512, 4170414, 15031771, 54559855, 199236416, 731434971, 2697934577, 9993489968, 37157691565, 138633745173, 518851050388, 1947388942885, 7328186394725
OFFSET
0,3
COMMENTS
Also (with a(0)=1 instead of 0): Number of fixed points in range [A014137(n-1)..A014138(n-1)] of permutation A089867/A089868, i.e., the number of n-node binary trees fixed by the corresponding automorphism(s).
LINKS
Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math. 309 (2009), no. 12, 3962-3974. [N. J. A. Sloane, Nov 26 2011]
Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
FORMULA
G.f.: (1-(1-4x)^(1/2))/(2(1-x-x^2)). The generating function for the convolution of Catalan and Fibonacci numbers is simply the generating functions of the Catalan and Fibonacci numbers multiplied together. - Molly Leonard (maleonard1(AT)stthomas.edu), Aug 04 2006
For n>1, a(n) = a(n-1) + a(n-2) + A000108(n-1). - Gerald McGarvey, Sep 19 2008
Conjecture: n*a(n) + (-5*n+6)*a(n-1) + 3*(n-2)*a(n-2) + 2*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jul 09 2013
a(n) = A139375(n,1) for n > 0. - Reinhard Zumkeller, Aug 28 2013
a(n) ~ 2^(2*n + 2) / (11*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 10 2018
MATHEMATICA
CoefficientList[Series[(1-(1-4x)^(1/2))/(2(1-x-x^2)), {x, 0, 30}], x] (* Harvey P. Dale, Apr 05 2011 *)
PROG
(MIT/GNU Scheme) (define (A090826 n) (convolve A000045 A000108 n))
(define (convolve fun1 fun2 upto_n) (let loop ((i 0) (j upto_n)) (if (> i upto_n) 0 (+ (* (fun1 i) (fun2 j)) (loop (+ i 1) (- j 1))))))
(Haskell)
import Data.List (inits)
a090826 n = a090826_list !! n
a090826_list = map (sum . zipWith (*) a000045_list . reverse) $
tail $ inits a000108_list
-- Reinhard Zumkeller, Aug 28 2013
CROSSREFS
Cf. Catalan numbers: A000108, Fibonacci numbers: A000045.
Sequence in context: A160999 A014329 A045633 * A132441 A000840 A362635
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Dec 20 2003
STATUS
approved