OFFSET
0,3
COMMENTS
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017).
Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math. 309 (2009), no. 12, 3962-3974. [N. J. A. Sloane, Nov 26 2011]
Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
FORMULA
G.f.: (1-(1-4x)^(1/2))/(2(1-x-x^2)). The generating function for the convolution of Catalan and Fibonacci numbers is simply the generating functions of the Catalan and Fibonacci numbers multiplied together. - Molly Leonard (maleonard1(AT)stthomas.edu), Aug 04 2006
For n>1, a(n) = a(n-1) + a(n-2) + A000108(n-1). - Gerald McGarvey, Sep 19 2008
Conjecture: n*a(n) + (-5*n+6)*a(n-1) + 3*(n-2)*a(n-2) + 2*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jul 09 2013
a(n) = A139375(n,1) for n > 0. - Reinhard Zumkeller, Aug 28 2013
a(n) ~ 2^(2*n + 2) / (11*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 10 2018
MATHEMATICA
CoefficientList[Series[(1-(1-4x)^(1/2))/(2(1-x-x^2)), {x, 0, 30}], x] (* Harvey P. Dale, Apr 05 2011 *)
PROG
(define (convolve fun1 fun2 upto_n) (let loop ((i 0) (j upto_n)) (if (> i upto_n) 0 (+ (* (fun1 i) (fun2 j)) (loop (+ i 1) (- j 1))))))
(Haskell)
import Data.List (inits)
a090826 n = a090826_list !! n
a090826_list = map (sum . zipWith (*) a000045_list . reverse) $
tail $ inits a000108_list
-- Reinhard Zumkeller, Aug 28 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Dec 20 2003
STATUS
approved