login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160999
Row sums of A027052.
2
1, 2, 5, 12, 31, 84, 233, 656, 1865, 5338, 15355, 44342, 128455, 373100, 1086087, 3167634, 9254009, 27074666, 79316491, 232633206, 683026535, 2007327660, 5904415195, 17381265934, 51203990457, 150945252394, 445252685313
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..2*n} A027052(n,k).
Conjecture: (-n+2)*a(n) +(6*n-11)*a(n-1) +(-7*n+1)*a(n-2) +2*(-4*n+27)*a(n-3) +(5*n-28)*a(n-4) +(2*n-3)*a(n-5) +3*(n-5)*a(n-6)=0. - R. J. Mathar, May 26 2016
EXAMPLE
a(2) = 1+0+1+2+1 = 5.
a(3) = 1+0+1+2+3+4+1 = 12.
MAPLE
A027052 := proc(n, k) option remember; if k =0 or k = 2*n then 1; elif k = 1 then 0; elif k =2 then 1; else procname(n-1, k-3)+procname(n-1, k-2)+procname(n-1, k-1) ; fi; end:
A160999 := proc(n) add( A027052(n, k), k=0..2*n) ; end: seq(A160999(n), n=0..30) ;
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n, k], {k, 0, 2*n}], {n, 0, 30}] (* G. C. Greubel, Nov 06 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n, k) for k in (0..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019
CROSSREFS
Sequence in context: A093379 A271929 A071359 * A014329 A045633 A090826
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Jun 01 2009
STATUS
approved