OFFSET
0,3
COMMENTS
For n > 0, the terms of this sequence are related to A000124 by a(n) = Sum_{i=0..n-1} i*A000124(i). - Bruno Berselli, Dec 20 2013
REFERENCES
A. Goupil, Combinatorics of the Kronecker products of irreducible representations of Sn, in preparation.
LINKS
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = 2*binomial(n, 2) + 4*binomial(n, 3) + 3*binomial(n, 4) = (n-1)*n*(3*n^2 + n + 10)/24.
a(n) = A049020(n, n-2), for n >= 2. - Philippe Deléham, Mar 06 2004
G.f.: x^2*(2 + x^2) / (1-x)^5. - Colin Barker, Nov 21 2012
MAPLE
f := proc(k) 2*binomial(k, 2)+4*binomial(k, 3)+3*binomial(k, 4); end;
seq (f(n), n=0..50);
MATHEMATICA
f[n_] := 2Binomial[n, 2] + 4Binomial[n, 3] + 3Binomial[n, 4]; Table[ f[n], {n, 0, 40}] (* Robert G. Wilson v, Feb 13 2004 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 2, 10, 31}, 38] (* Jean-François Alcover, Sep 25 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alain Goupil, Feb 10 2004
EXTENSIONS
More terms from Robert G. Wilson v, Feb 13 2004
STATUS
approved