login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of the irreducible character of S_m indexed by (m-2n+2,2n-2) in the n-th Kronecker power of the representation indexed by (m-2,2).
1

%I #31 Jan 25 2020 00:43:10

%S 0,0,2,10,31,75,155,287,490,786,1200,1760,2497,3445,4641,6125,7940,

%T 10132,12750,15846,19475,23695,28567,34155,40526,47750,55900,65052,

%U 75285,86681,99325,113305,128712,145640,164186,184450,206535,230547

%N Coefficient of the irreducible character of S_m indexed by (m-2n+2,2n-2) in the n-th Kronecker power of the representation indexed by (m-2,2).

%C For n > 0, the terms of this sequence are related to A000124 by a(n) = Sum_{i=0..n-1} i*A000124(i). - _Bruno Berselli_, Dec 20 2013

%D A. Goupil, Combinatorics of the Kronecker products of irreducible representations of Sn, in preparation.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = 2*binomial(n, 2) + 4*binomial(n, 3) + 3*binomial(n, 4) = (n-1)*n*(3*n^2 + n + 10)/24.

%F a(n) = A049020(n, n-2), for n >= 2. - _Philippe Deléham_, Mar 06 2004

%F G.f.: x^2*(2 + x^2) / (1-x)^5. - _Colin Barker_, Nov 21 2012

%p f := proc(k) 2*binomial(k,2)+4*binomial(k,3)+3*binomial(k,4); end;

%p seq (f(n), n=0..50);

%t f[n_] := 2Binomial[n, 2] + 4Binomial[n, 3] + 3Binomial[n, 4]; Table[ f[n], {n, 0, 40}] (* _Robert G. Wilson v_, Feb 13 2004 *)

%t LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 2, 10, 31}, 38] (* _Jean-François Alcover_, Sep 25 2017 *)

%Y Cf. A000124, A049020.

%K nonn,easy

%O 0,3

%A _Alain Goupil_, Feb 10 2004

%E More terms from _Robert G. Wilson v_, Feb 13 2004