OFFSET
1,2
COMMENTS
The terms are arguments introducing a sequence of 8 polynomially consecutive primes with respect to 4*x^2 - 154*x + 1523, a polynomial communicated by Rivera (2003).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1000
Carlos Rivera, Puzzle 232. Primes and Cubic polynomials, The Prime Puzzles and Problems Connection.
EXAMPLE
k = 1 provides {1373, 1231, 1097, 971, 853, 743, 641, 547}, an 8-chain of primes.
MATHEMATICA
okQ[x_] := And@@PrimeQ[Table[4n^2-154n+1523, {n, x, x+7}]];
Select[Range[ 510000], okQ] (* Harvey P. Dale, May 25 2011 *)
PROG
(PARI) isp(x) = isprime(4*x^2 - 154*x + 1523);
lista(kmax) = {my(v = vector(8, k, isp(k))); for(k = 9, kmax, if(vecprod(v) == 1, print1(k - 8, ", ")); v = concat(vecextract(v, "^1"), isp(k))); } \\ Amiram Eldar, Sep 27 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 30 2003
EXTENSIONS
a(43)-a(51) from Amiram Eldar, Sep 27 2024
STATUS
approved