OFFSET
1,2
COMMENTS
The terms are arguments providing a sequence of 7 polynomially consecutive primes with respect to 4*x^2 - 154*x + 1523, a polynomial communicated by Rivera (2003).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..6400 (terms 1..200 from Harvey P. Dale)
Carlos Rivera, Puzzle 232. Primes and Cubic polynomials, The Prime Puzzles and Problems Connection.
EXAMPLE
k = 1 provides {1373, 1231, 1097, 971, 853, 743, 641}, a 7-chain of primes.
MATHEMATICA
Flatten[Position[Partition[Table[If[PrimeQ[4n^2-154n+1523], 1, 0], {n, 46000}], 7, 1], {1, 1, 1, 1, 1, 1, 1}]] (* Harvey P. Dale, Mar 06 2015 *)
PROG
(PARI) isp(x) = isprime(4*x^2 - 154*x + 1523);
lista(kmax) = {my(v = vector(7, k, isp(k))); for(k = 8, kmax, if(vecprod(v) == 1, print1(k - 7, ", ")); v = concat(vecextract(v, "^1"), isp(k))); } \\ Amiram Eldar, Sep 27 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 30 2003
STATUS
approved