%I #28 Sep 27 2024 08:34:52
%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
%T 27,28,29,30,31,32,66,129,130,328,1619,7509,29714,45905,447588,509862,
%U 1022565,1102373,1388125,1665379,1762387,1786292,2111602,2962834,3391838
%N Values of k such that {P(k), P(k+1), ..., P(k+7)} are all prime numbers, where P(k) = 4*k^2 - 154*k + 1523.
%C The terms are arguments introducing a sequence of 8 polynomially consecutive primes with respect to 4*x^2 - 154*x + 1523, a polynomial communicated by Rivera (2003).
%H Amiram Eldar, <a href="/A090110/b090110.txt">Table of n, a(n) for n = 1..1000</a>
%H Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_232.htm">Puzzle 232. Primes and Cubic polynomials</a>, The Prime Puzzles and Problems Connection.
%e k = 1 provides {1373, 1231, 1097, 971, 853, 743, 641, 547}, an 8-chain of primes.
%t okQ[x_] := And@@PrimeQ[Table[4n^2-154n+1523, {n,x,x+7}]];
%t Select[Range[ 510000], okQ] (* _Harvey P. Dale_, May 25 2011 *)
%o (PARI) isp(x) = isprime(4*x^2 - 154*x + 1523);
%o lista(kmax) = {my(v = vector(8, k, isp(k))); for(k = 9, kmax, if(vecprod(v) == 1, print1(k - 8, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ _Amiram Eldar_, Sep 27 2024
%Y Cf. A090101, A090102, A090107, A090108, A090109, A055561, A090563.
%K nonn
%O 1,2
%A _Labos Elemer_, Dec 30 2003
%E a(43)-a(51) from _Amiram Eldar_, Sep 27 2024