|
|
A090088
|
|
Smallest even pseudoprimes to odd base=2n-1, not necessarily exceeding n. See also A007535 and A090086, A090087.
|
|
4
|
|
|
4, 286, 4, 6, 4, 10, 4, 14, 4, 6, 4, 22, 4, 26, 4, 6, 4, 34, 4, 38, 4, 6, 4, 46, 4, 10, 4, 6, 4, 58, 4, 62, 4, 6, 4, 10, 4, 74, 4, 6, 4, 82, 4, 86, 4, 6, 4, 94, 4, 14, 4, 6, 4, 106, 4, 10, 4, 6, 4, 118, 4, 122, 4, 6, 4, 10, 4, 134, 4, 6, 4, 142, 4, 146, 4, 6, 4, 14, 4, 158, 4, 6, 4, 166, 4, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For an even base there are no even pseudoprimes.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Min_{x=even number; (-1 + n^(x-1)) mod x = 0}.
|
|
EXAMPLE
|
n=2, 2n-2=3 as base, smallest relevant power is -1+2^(286-1) which is divisible by 286.
|
|
MATHEMATICA
|
Array[Block[{k = 4}, While[PowerMod[2 # - 1, k - 1, k] != 1, k += 2]; k] &, 86] (* Michael De Vlieger, Nov 13 2018 *)
|
|
PROG
|
(PARI) A090088(n) = { forstep(k=4, oo, 2, if(1==(Mod(n+n-1, k)^(k-1)), return (k)); ); } \\ (After code in A090086) - Antti Karttunen, Nov 10 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|