login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090089
Smallest even pseudoprimes to odd base=4n-1, not necessarily exceeding n.
4
286, 6, 10, 14, 6, 22, 26, 6, 34, 38, 6, 46, 10, 6, 58, 62, 6, 10, 74, 6, 82, 86, 6, 94, 14, 6, 106, 10, 6, 118, 122, 6, 10, 134, 6, 142, 146, 6, 14, 158, 6, 166, 10, 6, 178, 14, 6, 10, 194, 6, 202, 206, 6, 214, 218, 6, 226, 10, 6, 14, 22, 6, 10, 254, 6, 262, 14, 6, 274, 278, 6
OFFSET
1,1
COMMENTS
There are no even pseudoprimes to an even base.
LINKS
FORMULA
a(n)=Min{x=4n-1 number; Mod[ -1+n^(x-1), x]=0}
EXAMPLE
n=1: base = 4n-1=3, smallest relevant power is -1+2^(286-1) which is divisible by 286.
Sieving further residue classes, smallest regularly arising pseudoprimes are 6,10 etc..
MATHEMATICA
a[n_] := Module[{k = 2}, While[GCD[n, k] > 1 || PrimeQ[k] || PowerMod[n, k - 1, k] != 1, k += 2]; k]; Table[a[4*n - 1], {n, 1, 100}] (* Amiram Eldar, Nov 11 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 25 2003
STATUS
approved