login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A089299
Number of square plane partitions of n.
13
1, 1, 1, 1, 2, 2, 4, 5, 8, 11, 16, 21, 31, 41, 57, 78, 108, 146, 202, 274, 375, 509, 690, 929, 1255, 1679, 2246, 2991, 3979, 5266, 6971, 9187, 12104, 15898, 20870, 27322, 35762, 46690, 60927, 79348, 103270, 134138, 174108, 225576, 291990, 377320, 487083
OFFSET
0,5
COMMENTS
Number of ways of writing n as a sum p(1,1) + p(1,2) + ... + p(1,k) + p(2,1) + ... + p(2,k) + ... + p(k,1) + ... + p(k,k) for some k so that in the square array {p(i,j)} the numbers are nonincreasing along rows and columns. All the p(i,j) are >= 1.
LINKS
FORMULA
G.f.: Sum_{k>=0} x^(k^2) / Product_{j=1..2k-1} (1-x^j)^min(j,2k-j). - Franklin T. Adams-Watters, Jun 14 2006
EXAMPLE
a(7) = 5:
7 41 32 31 22
. 11 11 21 21
a(10) = 16 from {{10}}, {{3, 2}, {3, 2}}, {{3, 3}, {2, 2}}, {{3, 3}, {3, 1}}, {{4, 1}, {4, 1}}, {{4, 2}, {2, 2}}, {{4, 2}, {3, 1}}, {{4, 3}, {2, 1}}, {{4, 4}, {1, 1}}, {{5, 1}, {3, 1}}, {{5, 2}, {2, 1}}, {{5, 3}, {1, 1}}, {{6, 1}, {2, 1}}, {{6, 2}, {1, 1}}, {{7, 1}, {1, 1}}, {{2, 1, 1}, {1, 1, 1}, {1, 1, 1}}
From Gus Wiseman, Jan 16 2019: (Start)
The a(10) = 16 square plane partitions:
[ten]
.
[32] [33] [33] [41] [42] [42] [43] [44] [51] [52] [53] [61] [62] [71]
[32] [22] [31] [41] [22] [31] [21] [11] [31] [21] [11] [21] [11] [11]
.
[211]
[111]
[111]
(End)
MATHEMATICA
Table[Sum[Length[Select[Union[Sort/@Tuples[IntegerPartitions[#, {Length[ptn]}]&/@ptn]], And@@OrderedQ/@Transpose[#]&]], {ptn, IntegerPartitions[n]}], {n, 30}] (* Gus Wiseman, Jan 16 2019 *)
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 25 2003
EXTENSIONS
Corrected and extended by Wouter Meeussen, Dec 30 2003
a(21)-a(25) from John W. Layman, Jan 02 2004
More terms from Franklin T. Adams-Watters, Jun 14 2006
Name edited by Gus Wiseman, Jan 16 2019
STATUS
approved