login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088601
Number of steps to reach 0 when iterating A261424(x) = x - (the largest palindrome less than x), starting at n.
9
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2
OFFSET
1,10
COMMENTS
The sequence "minimum number of palindromes that sum up to n", A261675, coincides with this sequence up to a(301). But then a(302) = 3 since 302 = 292 + 9 + 1, whereas 302 = 111 + 191.
While it has been conjectured [proved by Cilleruelo & Luca, 2016 -Ed.] that every number can be represented as a sum of at most 3 palindromes, the terms of this sequence, which correspond to a greedy representation, can be larger than 3 (see A109326). For example, 1022 can be represented as 33 + 989, but a(1022) = 4, because the greedy decomposition gives 1022 = 1001 + 11 + 9 + 1. - Giovanni Resta, Aug 20 2015
Presumably this sequence is unbounded (compare A109326). - N. J. A. Sloane, Sep 02 2015
This sequence is unbounded. Let n(1) := 1. To construct n(j+1), take a natural number m with 10^m > n(j) and set n(j+1) := 10^(2m) + 1 + n(j). Then a(n(j)) = j. - Markus Sigg, Oct 26 2015
In A109326 an explicit formula for a smaller (conjectured sharp) upper bound was already given earlier. - M. F. Hasler, Sep 09 2018
LINKS
William D. Banks, Every natural number is the sum of forty-nine palindromes, arXiv:1508.04721 [math.NT], 2015 and INTEGERS 16 (2016) A3
Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, arXiv:1602.06208 [math.NT], 2016-2017.
M. F. Hasler, Sum of palindromes, OEIS wiki, Sept. 2015
Markus Sigg, On a conjecture of John Hoffman regarding sums of palindromic numbers, arXiv:1510.07507 [math.NT], 2015.
FORMULA
a(n) < log_2(log_10(n)) + 3. - M. F. Hasler, Sep 09 2018
EXAMPLE
a(10) = 2: f(10) = 10-9 = 1, f(1) = 1-1 = 0, two steps.
MAPLE
# From N. J. A. Sloane, Aug 28 2015
# P has list of palindromes
palfloor:=proc(n) global P; local i;
for i from 1 to nops(P) do
if P[i]=n then return(n); fi;
if P[i]>n then return(P[i-1]); fi;
od:
end;
GA:=proc(n) global P, palfloor; local a, i, k;
a:=1; k:=n;
for i from 1 to 30 do
if k-palfloor(k)=0 then return(a);
else k:=k-palfloor(k); a:=a+1; fi;
od; end;
[seq(GA(n), n=0..200)];
MATHEMATICA
Length@ NestWhileList[f, #, # > 0 &] & /@ Range@ 105 - 1 (* Michael De Vlieger, Oct 26 2015 *)
PROG
(PARI) ispal(n) = my(d=digits(n)); Vecrev(d)==d;
fp(n) = {while(!ispal(n), n--); n; }
a(n) = {nb = 0; while (n, n -= fp(n); nb++); nb; } \\ Michel Marcus, Aug 20 2015
/* The above fp() is extremely inefficient already for mid-sized numbers. The PARI function A261423 should be preferred.*/
(PARI) A088601(n)=for(i=1, oo, (n-=A261423(n))||return(i)) \\ M. F. Hasler, Sep 09 2018
(Python)
def P(n):
s = str(n); h = s[:(len(s)+1)//2]; return int(h + h[-1-len(s)%2::-1])
def A261423(n):
s = str(n)
if s == '1'+'0'*(len(s)-1) and n > 1: return n - 1
Pn = P(n)
return Pn if Pn <= n else P(n - 10**(len(s)//2))
def A088601(n): return 0 if n == 0 else 1 + A088601(n - A261423(n))
print([A088601(n) for n in range(1, 106)]) # Michael S. Branicky, Jul 12 2021
CROSSREFS
Cf. A109326 gives index of first occurrence of n in this sequence ("greedy inverse").
Sequence in context: A257317 A163376 A261913 * A261675 A028950 A094916
KEYWORD
base,easy,nonn
AUTHOR
Amarnath Murthy, Oct 13 2003
EXTENSIONS
More terms from David Wasserman, Aug 11 2005
STATUS
approved