|
|
A261675
|
|
Minimal number of palindromes in base 10 that add to n.
|
|
12
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,11
|
|
COMMENTS
|
This sequence coincides with A088601 for n <= 301, but differs at n=302.
Although A088601 and this sequence agree for a large number of terms, because of their importance they warrant separate entries.
Cilleruelo and Luca prove that a(n) <= 3 (in fact they prove this for any fixed base g>=5). - Danny Rorabaugh, Feb 26 2016
|
|
LINKS
|
N. J. A. Sloane, Table of n, a(n) for n = 0..10000
Javier Cilleruelo and Florian Luca, Every positive integer is a sum of three palindromes, arXiv preprint arXiv:1602.06208 [math.NT], 2016.
William D. Banks, Every natural number is the sum of forty-nine palindromes, INTEGERS 17 (2016), 9 pp.
James Grime and Brady Haran, Every Number is the Sum of Three Palindromes (2018), Numberphile video
|
|
PROG
|
(PARI) ispal(n)=my(d=digits(n)); d==Vecrev(d);
a(n)=my(L=n\2, d, e); if(ispal(n), return(1)); d=[1]; while((e=fromdigits(d))<=L, if(ispal(n-e), return(2)); my(k=#d, i=(k+1)\2); while(i&&d[i]==9, d[i]=0; d[k+1-i]=0; i--); if(i, d[i]++; d[k+1-i]=d[i], d=vector(#d+1); d[1]=d[#d]=1)); 3; \\ Charles R Greathouse IV, Nov 12 2018
|
|
CROSSREFS
|
Cf. A002113, A035137, A088601, A260255, A261422.
Sequence in context: A163376 A261913 A088601 * A028950 A094916 A036485
Adjacent sequences: A261672 A261673 A261674 * A261676 A261677 A261678
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
N. J. A. Sloane, Sep 02 2015
|
|
STATUS
|
approved
|
|
|
|