The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087776 Primes prime(k) such that -prime(k-2) + 2*prime(k-1) - 2*prime(k+1) + prime(k+2) == 0. 0
 11, 13, 17, 73, 103, 107, 241, 337, 353, 373, 421, 491, 563, 593, 619, 683, 701, 709, 733, 743, 773, 977, 1051, 1103, 1433, 1487, 1571, 1607, 1789, 1861, 1873, 1993, 2011, 2143, 2287, 2383, 2543, 2677, 2693, 2753, 2803, 2917, 2927, 2953, 3359, 3389, 3407 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS A finite dual Laplacian sequence of primes. Prime(k+2) - 2*prime(k+1) + prime(k) = prime(k-2) - 2*prime(k-1) + prime(k). A finite Laplacian at two points set equal to k+1 and k-1 over the primes. Almost but not quite equivalent to a finite third derivative. LINKS MATHEMATICA digits=3000 e=Table[If[ -Prime[n-2]+2*Prime[n-1]-2*Prime[n+1]+Prime[n+2]==0, Prime[n], 0], {n, 3, digits}]; f=Delete[Union[e], 1] CROSSREFS Cf. A087774, A087775. Sequence in context: A019371 A068335 A306766 * A098031 A179208 A098423 Adjacent sequences:  A087773 A087774 A087775 * A087777 A087778 A087779 KEYWORD nonn AUTHOR Roger L. Bagula, Oct 04 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 19:55 EDT 2022. Contains 353957 sequences. (Running on oeis4.)