login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087776 Primes prime(k) such that -prime(k-2) + 2*prime(k-1) - 2*prime(k+1) + prime(k+2) == 0. 0

%I

%S 11,13,17,73,103,107,241,337,353,373,421,491,563,593,619,683,701,709,

%T 733,743,773,977,1051,1103,1433,1487,1571,1607,1789,1861,1873,1993,

%U 2011,2143,2287,2383,2543,2677,2693,2753,2803,2917,2927,2953,3359,3389,3407

%N Primes prime(k) such that -prime(k-2) + 2*prime(k-1) - 2*prime(k+1) + prime(k+2) == 0.

%C A finite dual Laplacian sequence of primes.

%C Prime(k+2) - 2*prime(k+1) + prime(k) = prime(k-2) - 2*prime(k-1) + prime(k). A finite Laplacian at two points set equal to k+1 and k-1 over the primes. Almost but not quite equivalent to a finite third derivative.

%t digits=3000 e=Table[If[ -Prime[n-2]+2*Prime[n-1]-2*Prime[n+1]+Prime[n+2]==0, Prime[n], 0], {n, 3, digits}]; f=Delete[Union[e], 1]

%Y Cf. A087774, A087775.

%K nonn

%O 3,1

%A _Roger L. Bagula_, Oct 04 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 2 21:48 EDT 2022. Contains 355029 sequences. (Running on oeis4.)