login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087564
a(n) = smallest prime of the form n*(n+1)*(n+2)*...*(n+k) + 1, or 0 if no such prime exists.
7
2, 3, 13, 5, 31, 7, 55441, 73, 991, 11, 670442572801, 13, 2731, 211, 241, 17, 307, 19, 4037881, 421, 463, 23, 725902806896876799590400001, 601, 17551, 530122321, 757, 29, 45143585625601, 31, 5296855682339020801, 63606090241, 1123, 42841
OFFSET
1,1
COMMENTS
a(n) = n+1 iff n+1 is prime. Conjecture: No term is zero.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..522 (first 100 terms from Jean-François Alcover)
EXAMPLE
7 + 1 = 8, 7*8 + 1 = 57, 7*8*9 + 1 = 505, 7*8*9*10 + 1 = 5041 are all composite, but 7*8*9*10*11 + 1 = 55441 is prime, so a(7) = 55441.
MAPLE
for n from 1 to 70 do k := 0: while(not isprime(1+product(n+i, i=0..k ))) do k := k+1:od:a[n] := 1+product(n+i, i=0..k):od:seq(a[l], l=1..70); # Sascha Kurz
MATHEMATICA
kmax = 120; a[n_] := For[k = 0, True, k++, If[k == kmax, Return[0], If[PrimeQ[p = Pochhammer[n, k+1] + 1], Return[p]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 02 2013 *)
PROG
(PARI) for(n=1, 34, k=0; m=n; while(!isprime(m+1, 1), k++; m=m*(n+k)); print1(m+1, ", "))
CROSSREFS
Cf. A087565.
Sequence in context: A076988 A128369 A087568 * A306431 A192362 A057776
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 15 2003
EXTENSIONS
Edited and extended by Klaus Brockhaus and Sascha Kurz, Sep 20 2003
STATUS
approved