

A057776


a(n)th prime is smallest such that p(a[n])1 is divisible by 2^(n1) and quotient is odd.


1



1, 2, 3, 13, 7, 25, 44, 116, 55, 974, 1581, 2111, 1470, 4289, 10847, 15000, 6543, 91466, 62947, 397907, 498178, 1452314, 6025010, 20197904, 38946356, 9385401, 24843812, 98842359, 166808880, 556542914, 154570517
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..31.


EXAMPLE

n=1,a(1)=1, p(a(1))=p(1)=2 and p1=1 is divisible by 2^(n1)=2^0=1; moreover 2 is the smallest. n=10, a(10)=974, the 974th prime is 7681, p(974)1=7680=512.15, is divisible by 2^9 =512 the quotient is 15 and no such a prime is below 7681. A057775(30)= 12348030977; A057776(30)=556542914 It means 12348030977 is the 556542914th prime. A057777(30) = 12348030976; When A057777(30) is divided by 2^29, the quotient is 23=A057778(30).


CROSSREFS

Cf. A000040, A006093, A057773A057778.
Sequence in context: A087564 A306431 A192362 * A110362 A074478 A046421
Adjacent sequences: A057773 A057774 A057775 * A057777 A057778 A057779


KEYWORD

nonn


AUTHOR

Labos Elemer, Nov 02 2000


STATUS

approved



