login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = smallest prime of the form n*(n+1)*(n+2)*...*(n+k) + 1, or 0 if no such prime exists.
7

%I #16 Dec 17 2017 03:05:35

%S 2,3,13,5,31,7,55441,73,991,11,670442572801,13,2731,211,241,17,307,19,

%T 4037881,421,463,23,725902806896876799590400001,601,17551,530122321,

%U 757,29,45143585625601,31,5296855682339020801,63606090241,1123,42841

%N a(n) = smallest prime of the form n*(n+1)*(n+2)*...*(n+k) + 1, or 0 if no such prime exists.

%C a(n) = n+1 iff n+1 is prime. Conjecture: No term is zero.

%H Antti Karttunen, <a href="/A087564/b087564.txt">Table of n, a(n) for n = 1..522</a> (first 100 terms from Jean-François Alcover)

%e 7 + 1 = 8, 7*8 + 1 = 57, 7*8*9 + 1 = 505, 7*8*9*10 + 1 = 5041 are all composite, but 7*8*9*10*11 + 1 = 55441 is prime, so a(7) = 55441.

%p for n from 1 to 70 do k := 0: while(not isprime(1+product(n+i,i=0..k ))) do k := k+1:od:a[n] := 1+product(n+i,i=0..k):od:seq(a[l],l=1..70); # _Sascha Kurz_

%t kmax = 120; a[n_] := For[k = 0, True, k++, If[k == kmax, Return[0], If[PrimeQ[p = Pochhammer[n, k+1] + 1], Return[p]]]]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Oct 02 2013 *)

%o (PARI) for(n=1,34,k=0; m=n; while(!isprime(m+1,1),k++; m=m*(n+k)); print1(m+1,","))

%Y Cf. A087565.

%K nonn

%O 1,1

%A _Amarnath Murthy_, Sep 15 2003

%E Edited and extended by _Klaus Brockhaus_ and _Sascha Kurz_, Sep 20 2003