login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087278
Nonnegative integers whose distance to the nearest square is not greater than 1.
3
0, 1, 2, 3, 4, 5, 8, 9, 10, 15, 16, 17, 24, 25, 26, 35, 36, 37, 48, 49, 50, 63, 64, 65, 80, 81, 82, 99, 100, 101, 120, 121, 122, 143, 144, 145, 168, 169, 170, 195, 196, 197, 224, 225, 226, 255, 256, 257, 288, 289, 290, 323, 324, 325, 360, 361, 362, 399, 400, 401
OFFSET
0,3
FORMULA
a(3*k) = (k+1)^2 - 1 = A005563(k+1);
a(3*k+1) = (k+1)^2 = A000290(k+1);
a(3*k+2) = (k+1)^2 + 1 = A002522(k+1).
a(n) = floor(n/3)*(floor(n/3) + 2) + n mod 3.
G.f.: -x*(1+x)*(x^4-2*x^3+x^2+1) / ( (1+x+x^2)^2*(x-1)^3 ). - R. J. Mathar, May 22 2019
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=1} 1/a(n) = coth(Pi)*Pi/2 + Pi^2/6 + 1/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = cosech(Pi)*Pi/2 + Pi^2/12 - 1/4. (End)
MATHEMATICA
dnsQ[n_]:=Module[{x=Floor[Sqrt[n]]}, Min[n-x^2, (x+1)^2-n]<=1]; Select[Range[0, 450], dnsQ] (* Harvey P. Dale, May 25 2011 *)
Table[n^2+{-1, 0, 1}, {n, 20}]//Flatten (* Harvey P. Dale, Jan 17 2022 *)
PROG
(Python)
def A087278(n):
a, b = divmod(n, 3)
return a*(a+2)+b # Chai Wah Wu, Aug 03 2022
CROSSREFS
Union of A005563, A000290 and A002522.
Sequence in context: A190018 A217349 A329574 * A054220 A337801 A116214
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 28 2003
STATUS
approved