login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nonnegative integers whose distance to the nearest square is not greater than 1.
3

%I #25 Sep 14 2022 02:02:10

%S 0,1,2,3,4,5,8,9,10,15,16,17,24,25,26,35,36,37,48,49,50,63,64,65,80,

%T 81,82,99,100,101,120,121,122,143,144,145,168,169,170,195,196,197,224,

%U 225,226,255,256,257,288,289,290,323,324,325,360,361,362,399,400,401

%N Nonnegative integers whose distance to the nearest square is not greater than 1.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2,-2,0,-1,1).

%F a(3*k) = (k+1)^2 - 1 = A005563(k+1);

%F a(3*k+1) = (k+1)^2 = A000290(k+1);

%F a(3*k+2) = (k+1)^2 + 1 = A002522(k+1).

%F a(n) = floor(n/3)*(floor(n/3) + 2) + n mod 3.

%F G.f.: -x*(1+x)*(x^4-2*x^3+x^2+1) / ( (1+x+x^2)^2*(x-1)^3 ). - _R. J. Mathar_, May 22 2019

%F From _Amiram Eldar_, Sep 14 2022: (Start)

%F Sum_{n>=1} 1/a(n) = coth(Pi)*Pi/2 + Pi^2/6 + 1/4.

%F Sum_{n>=1} (-1)^(n+1)/a(n) = cosech(Pi)*Pi/2 + Pi^2/12 - 1/4. (End)

%t dnsQ[n_]:=Module[{x=Floor[Sqrt[n]]},Min[n-x^2,(x+1)^2-n]<=1]; Select[Range[0,450],dnsQ] (* _Harvey P. Dale_, May 25 2011 *)

%t Table[n^2+{-1,0,1},{n,20}]//Flatten (* _Harvey P. Dale_, Jan 17 2022 *)

%o (Python)

%o def A087278(n):

%o a, b = divmod(n,3)

%o return a*(a+2)+b # _Chai Wah Wu_, Aug 03 2022

%Y Union of A005563, A000290 and A002522.

%Y Cf. A002264, A010872, A087279.

%K nonn,easy

%O 0,3

%A _Reinhard Zumkeller_, Aug 28 2003