login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087054
Primes of the form pq + qr + rp where p, q and r are distinct primes.
7
31, 41, 59, 61, 71, 101, 103, 113, 131, 151, 167, 191, 199, 211, 227, 239, 241, 251, 263, 269, 271, 281, 293, 311, 331, 347, 359, 383, 401, 419, 421, 431, 439, 461, 467, 479, 487, 491, 503, 521, 541, 563, 571, 587, 599, 607, 617, 631, 641, 647, 653, 661, 691
OFFSET
1,1
EXAMPLE
A003415(2*3*19)=2*3+3*19+19*2=101=A000040(26), therefore 101 is a term (but also A003415(2*5*13)=2*5+5*13+13*2=101).
MATHEMATICA
sumProd[p_, q_, r_]:=p*q+p*r+q*r; pqrPrimes[nn_] := Module[{p=Prime[Range[PrimePi[(nn-6)/5]+1]], i, j, k, n}, Union[Reap[i=0; While[i++; sumProd[p[[i]], p[[i+1]], p[[i+2]]] <= nn, j=i; While[j++; sumProd[p[[i]], p[[j]], p[[j+1]]] <= nn, k=j; While[k++; n=sumProd[p[[i]], p[[j]], p[[k]]]; n <= nn, If[PrimeQ[n], Sow[n]]]]]][[2, 1]]]]; pqrPrimes[1000] (* T. D. Noe, Apr 27 2011 *)
nn=100; Take[Select[Union[Total[Times@@@Subsets[#, {2}]]&/@Subsets[ Prime[ Range[ nn]], {3}]], PrimeQ], nn] (* Harvey P. Dale, Jan 08 2013 *)
PROG
(PARI) list(lim)=my(v=List()); forprime(r=5, (lim-6)\5, forprime(q=3, min((lim-2*r)\(r+2), r-2), my(S=q+r, P=q*r); forprime(p=2, min((lim-P)\S, q-1), isprime(p*S+P) && listput(v, p*S+P)))); Set(v) \\ Charles R Greathouse IV, Feb 26 2014
(PARI) is(n)=forprime(r=(sqrtint(3*n-3)+5)\3, (n-6)\5, forprime(q= sqrtint(r^2+n)-r+1, min((n-2*r)\(r+2), r-2), if((n-q*r)%(q+r)==0 && isprime((n-q*r)/(q+r)), return(isprime(n))))); 0 \\ Charles R Greathouse IV, Feb 26 2014
CROSSREFS
Cf. A087053 (numbers of the form pq+qr+rp).
Cf. A189759 (p*q*r for primes of this form).
Sequence in context: A104822 A198175 A238397 * A245650 A363187 A098711
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 07 2003
EXTENSIONS
Corrected by T. D. Noe, Apr 27 2011
STATUS
approved