Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 26 2015 17:42:36
%S 31,41,59,61,71,101,103,113,131,151,167,191,199,211,227,239,241,251,
%T 263,269,271,281,293,311,331,347,359,383,401,419,421,431,439,461,467,
%U 479,487,491,503,521,541,563,571,587,599,607,617,631,641,647,653,661,691
%N Primes of the form pq + qr + rp where p, q and r are distinct primes.
%H T. D. Noe, <a href="/A087054/b087054.txt">Table of n, a(n) for n = 1..10000</a>
%e A003415(2*3*19)=2*3+3*19+19*2=101=A000040(26), therefore 101 is a term (but also A003415(2*5*13)=2*5+5*13+13*2=101).
%t sumProd[p_,q_,r_]:=p*q+p*r+q*r; pqrPrimes[nn_] := Module[{p=Prime[Range[PrimePi[(nn-6)/5]+1]],i,j,k,n}, Union[Reap[i=0; While[i++; sumProd[p[[i]],p[[i+1]],p[[i+2]]] <= nn, j=i; While[j++; sumProd[p[[i]],p[[j]],p[[j+1]]] <= nn, k=j; While[k++; n=sumProd[p[[i]],p[[j]],p[[k]]]; n <= nn, If[PrimeQ[n], Sow[n]]]]]][[2,1]]]]; pqrPrimes[1000] (* _T. D. Noe_, Apr 27 2011 *)
%t nn=100;Take[Select[Union[Total[Times@@@Subsets[#,{2}]]&/@Subsets[ Prime[ Range[ nn]],{3}]],PrimeQ],nn] (* _Harvey P. Dale_, Jan 08 2013 *)
%o (PARI) list(lim)=my(v=List()); forprime(r=5, (lim-6)\5, forprime(q=3, min((lim-2*r)\(r+2), r-2), my(S=q+r, P=q*r); forprime(p=2, min((lim-P)\S, q-1), isprime(p*S+P) && listput(v,p*S+P)))); Set(v) \\ _Charles R Greathouse IV_, Feb 26 2014
%o (PARI) is(n)=forprime(r=(sqrtint(3*n-3)+5)\3, (n-6)\5, forprime(q= sqrtint(r^2+n)-r+1, min((n-2*r)\(r+2), r-2), if((n-q*r)%(q+r)==0 && isprime((n-q*r)/(q+r)), return(isprime(n))))); 0 \\ _Charles R Greathouse IV_, Feb 26 2014
%Y Cf. A087053 (numbers of the form pq+qr+rp).
%Y Cf. A189759 (p*q*r for primes of this form).
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, Aug 07 2003
%E Corrected by _T. D. Noe_, Apr 27 2011