The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085849 Decimal expansion of the probability that two m X m and n X n matrices (m,n large) have relatively prime determinants. 0
 3, 5, 3, 2, 3, 6, 3, 7, 1, 8, 5, 4, 9, 9, 5, 9, 8, 4, 5, 4, 3, 5, 1, 6, 5, 5, 0, 4, 3, 2, 6, 8, 2, 0, 1, 1, 2, 8, 0, 1, 6, 4, 7, 7, 8, 5, 6, 6, 6, 9, 0, 4, 4, 6, 4, 1, 6, 0, 8, 5, 9, 4, 2, 8, 1, 4, 2, 3, 8, 3, 2, 5, 0, 0, 2, 6, 6, 9, 0, 0, 3, 4, 8, 3, 6, 7, 2, 0, 7, 8, 3, 3, 4, 3, 3, 5, 4, 9, 8, 9, 6, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The Hafner-Sarnak-McCurley constant. [Named after the American mathematician James Lee Hafner (1954-2015), the South-African and American mathematician Peter Clive Sarnak (b. 1953) and the American mathematician and computer scientist Kevin Snow McCurley. - Amiram Eldar, Jun 15 2021] Comment on numerics from R. J. Mathar, Apr 20 2011: (Start) The definition s = Product_{p} (1-[1- Product_{n>=1} (1-1/p^n)]^2) may be binomially expanded to s = Product_{p} Sum_{n>=1} (2*A010815(n)-A002107(n))/p^n. The auxiliary sequence 2*A010815(n)-A002107(n) is 1, 0, -1, -2, -1, 0, 2, 2, 2, 2, -1, 0,... for n>=0. The inverse Euler transformation of the auxiliary sequence generates Sum_{n} (2*A010815(n)-A002107(n)) /p^n = Product_{n} (1-1/p^n)^gamma(n) with gamma(n) = 0, -1, -2 ,-1, -2, 0, -2, -1, 0, -2, 0, -1,... for n>=1. This yields s = Product_{n>=1} zeta(n)^gamma(n) where zeta(n) are the values of the Riemann zeta function. (End) REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.5, "Hafner-Sarnak-McCurley Constant", pp. 110-112. Ilan Vardi, Computational Recreations in Mathematica, Redwood City, CA: Addison-Wesley, 1991, p. 174. LINKS Philippe Flajolet and Ilan Vardi, Zeta function expansions of some classical constants. J. L. Hafner, P. Sarnak and K. McCurley, Relatively prime values of polynomials, in: M. Knopp and M. Sheigorn, Editors, A Tribute to Emil Grosswald: Number Theory and Related Analysis, Contemporary Mathematics, Vol. 143, AMS, 1993. Eric Weisstein's World of Mathematics, Hafner-Sarnak-McCurley Constant. Wikipedia, Hafner-Sarnak-McCurley constant. FORMULA Equals Product_{p prime} (1-(1-Product_{n>=1} (1-1/p^n))^2). - Benoit Cloitre, Aug 05 2003 EXAMPLE 0.3532363718549959845435165504326820112801647785666904464160859428... MATHEMATICA digits = 102; CC = CoefficientList[Log[1 - (1 - QPochhammer[1/p])^2] + O[p, Infinity]^(4 digits), 1/p][[3 ;; -1]]; Hafner = CC.Table[PrimeZetaP[n + 1], {n, 1, Length[CC]}] // Exp // N[#, digits+10]&; RealDigits[Hafner, 10, digits][[1]] (* Jean-François Alcover, Apr 25 2016 *) CROSSREFS Cf. A002107, A010815. Sequence in context: A057023 A332438 A245509 * A100481 A205009 A101778 Adjacent sequences:  A085846 A085847 A085848 * A085850 A085851 A085852 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Jul 05 2003 EXTENSIONS More terms from Benoit Cloitre, Aug 05 2003 Edited by N. J. A. Sloane, Feb 11 2009 at the suggestion of R. J. Mathar Twenty additional digits from R. J. Mathar, Feb 13 2009 Extended to 100 digits by Jean-François Alcover, Apr 25 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 15:10 EDT 2022. Contains 356066 sequences. (Running on oeis4.)