The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085848 Decimal expansion of Foias' constant. 2
 1, 1, 8, 7, 4, 5, 2, 3, 5, 1, 1, 2, 6, 5, 0, 1, 0, 5, 4, 5, 9, 5, 4, 8, 0, 1, 5, 8, 3, 9, 6, 5, 1, 9, 3, 5, 1, 2, 1, 5, 6, 9, 2, 6, 8, 1, 5, 8, 5, 8, 6, 0, 3, 5, 3, 0, 1, 0, 1, 0, 4, 1, 2, 6, 1, 9, 8, 7, 8, 0, 4, 1, 8, 7, 2, 3, 5, 2, 5, 4, 0, 7, 3, 8, 7, 0, 2, 4, 6, 5, 7, 6, 0, 6, 0, 8, 6, 5, 7, 9, 4, 3, 3, 7, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS This is the unique real x_1 such that iterating x_{n+1} = (1 + 1/x_n)^n yields a series which diverges to infinity (rather than having 1 and infinity as limit points). - Charles R Greathouse IV, Nov 19 2013 From Giuseppe Coppoletta, Aug 22 2016: (Start) It appears that x_1 can be easily backward calculated. Let us define for any fixed N, t_(n+1) = 1/((t_n)^(1/(N-n))-1) for n = 1..N-1, beginning with whatever t_1 > 1. Then t_N approaches x_1 as N tends to infinity. If we allow t_n to be complex, this is still true for any t_1 in the complex domain, excluding t_1 = 1. With this we have a surprising representation of the Foias constant: x_1 = 1/(-1+1/(-1+exp(-1/2*log(abs(-1+exp(-1/3*log(abs(-1+exp(-1/4*log(abs(-1+exp(-1/5*... (End) Named after the Romanian-American mathematician Ciprian Foias (1933 - 2020). - Amiram Eldar, Aug 25 2020 LINKS Giuseppe Coppoletta, Table of n, a(n) for n = 1..10000 Nicolae Anghel, Foias Numbers, An. Sţiinţ. Univ. Ovidius Constanţa. Mat. (The Journal of Ovidius University of Constanţa), Vol. 26, No. 3 (2018), pp. 21-28. John Ewing and Ciprian Foias, An Interesting Serendipitous Real Number, in:  C. Calude and G. Paun (eds.), Finite vs, Infinite: Contributions to an Eternal Dilemma, Springer, London, 2000, pp. 119-126, alternative link. Eric Weisstein's World of Mathematics, Foias Constant. Wikipedia, Foias Constant. FORMULA x_{n+1} = (1 + 1/{x_n})^n for n=1,2,3,... EXAMPLE 1.18745235112650105459548015839651935121569268158586035301010412619878... MATHEMATICA x[1, a_] = a; x[n_, a_] :=(1+1/x[n-1, a])^(n-1); RealDigits[ a /. FindRoot[x[220, a] == 10^65, {a, 1, 2}, WorkingPrecision -> 110, MaxIterations -> 500]][[1]][[1 ;; 105]] (* Jean-François Alcover, Nov 12 2012 *) PROG (PARI) f(x, n)=for(i=2, n, x=(1.0+1.0/x)^(i-1)); x default(realprecision, 200); solve(y=1, 2, f(y, 800)-1-10^(-200)) \\ Robert Gerbicz, May 08 2008 (PARI) foias(p)=my(N=2*p, t=2); localprec(p); for(n=1, N-1, t=1./(t^(1/(N-n))-1)); t \\ returns the Foias constant to p decimals; Bill Allombert, via Charles R Greathouse IV, Jan 04 2017 (Sage) R = RealField(350); RealNumber = R; x=R(2) for n in xsrange (220, 0, -1): x=1/(x^(1/n)-1) print('x_1 =', x); print('digits x_1 =', [ZZ(k) for k in x.str(skip_zeroes=True) if k.isdigit()]) # Giuseppe Coppoletta, Aug 22 2016 CROSSREFS Sequence in context: A274442 A249136 A154815 * A008960 A077744 A111448 Adjacent sequences: A085845 A085846 A085847 * A085849 A085850 A085851 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Jul 05 2003 EXTENSIONS More terms from Robert Gerbicz, May 08 2008 More terms from Giuseppe Coppoletta, Aug 19 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 13:32 EDT 2024. Contains 374445 sequences. (Running on oeis4.)