OFFSET
1,2
COMMENTS
This equals r0 + 1/3 where r0 is the real root of y^3 + (2/3)*y - 47/27, after 1/3.
The other (complex) roots of x^3 - x^2 + x - 2 are (w1*(4*(47 + 3*sqrt(249)))^(1/3) + (4*(47 - 3*sqrt(249)))^(1/3) + 2)/6 = -0.1766049820... + 1.2028208192...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) is one of the complex roots of x^3 - 1.
Using hyperbolic functions these roots are (-sqrt(2)*(sinh((1/3)*arcsinh((47/8)*sqrt(2))) - sqrt(3)*cosh((1/3)*arcsinh((47/8)*sqrt(2)))*i) + 1)/3, and its complex conjugate.
FORMULA
r = ((4*(47 + 3*sqrt(249)))^(1/3) - 8*(4*(47 + 3*sqrt(249)))^(-1/3) + 2)/6.
r = ((4*(47 + 3*sqrt(249)))^(1/3) + w1*(4*(47 - 3*sqrt(249)))^(1/3) + 2)/6, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) is one of the complex roots of x^3 - 1.
r = (2*sqrt(2)*sinh((1/3)*arcsinh((47/8)*sqrt(2))) + 1)/3.
Equals A197032 minus one.
EXAMPLE
1.3532099641993244294831013325773884572707056138568468268066930426515189723220920859165...
MAPLE
Digits := 140 ;
r := (2*sqrt(2)*sinh((1/3)*arcsinh((47/8)*sqrt(2))) + 1)/3 ;
evalf(%) ; # R. J. Mathar, Nov 08 2022
MATHEMATICA
RealDigits[x /. FindRoot[x^3 - x^2 + x - 2, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Oct 18 2022 *)
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Oct 17 2022
STATUS
approved