login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357472
Decimal expansion of the real root of x^3 + x^2 + 2*x - 1.
2
3, 9, 2, 6, 4, 6, 7, 8, 1, 7, 0, 2, 6, 4, 0, 8, 1, 1, 7, 6, 4, 8, 7, 9, 5, 9, 4, 8, 8, 4, 3, 4, 1, 2, 5, 0, 7, 0, 3, 7, 6, 4, 9, 6, 8, 5, 9, 3, 4, 8, 2, 5, 8, 9, 7, 3, 1, 1, 3, 9, 6, 4, 9, 8, 4, 4, 5, 1, 7, 1, 6, 6, 8, 4, 7, 0, 8
OFFSET
0,1
COMMENTS
This equals r0 - 1/3 where r0 is the real root of y^3 + (5/3)*y - 43/27.
The other roots of x^3 - x^2 + 2*x - 1 are (-1 + w1*((43 + 9*sqrt(29))/2)^(1/3) + ((43 - 9*sqrt(29))/2)^(1/3))/3 = -0.6963233908... + 1.4359498641...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 is one of the complex conjugate roots of x^3 - 1.
Using hyperbolic functions these roots are -(1 + sqrt(5)*(sinh((1/3)*arcsinh( (43/50)*sqrt(5))) - sqrt(3)*cosh((1/3)*arcsinh((43/50)*sqrt(5)))*i))/3, and its complex conjugate.
FORMULA
r = (-2 + (4*(43 + 9*sqrt(29)))^(1/3) - 20*(4*(43 + 9*sqrt(29)))^(-1/3))/6.
r = (-2 + (4*(43 + 9*sqrt(29)))^(1/3) + w1*(4*(43 - 9*sqrt(29)))^(1/3))/6, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i) is one of the complex conjugate roots of x^3 - 1.
r = (-1 + 2*sqrt(5)*sinh((1/3)*arcsinh((43/50)*sqrt(5))))/3.
r = (-5*u^(1/3) + u^(-1/3) - 1)/3 where u = 2/(43 + 9*sqrt(29)). - Peter Luschny, Nov 01 2022
r = (-1/3) + (43/45) * Hyper2F1([1/3, 2/3], [3/2], -43^2/(5*10^2)). - Gerry Martens, Nov 04 2022
EXAMPLE
0.3926467817026408117648795948843412507037649685934825897311396498445171668...
MAPLE
Digits:=100: u := 2/(43 + 9*sqrt(29)): (-5*u^(1/3) + u^(-1/3) - 1)/3:
evalf(%*10^78): ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Nov 01 2022
MATHEMATICA
RealDigits[x /. FindRoot[x^3 + x^2 + 2*x - 1, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Oct 26 2022 *)
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Wolfdieter Lang, Oct 25 2022
STATUS
approved