OFFSET
1,2
COMMENTS
Prime numbers in this sequence are called prime replicators of 2, by Stolarski and Greenbaum, (3, 4, 6) being the solutions of phi(x)=2. - Michel Marcus, Oct 20 2012
Prime numbers in this sequence when multiplied by 2 equal k + 2. For example, 83 * 2 = 164 + 2. - Torlach Rush, Jun 16 2018
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..500
K. B. Stolarski and S. Greenbaum, A Ratio Associated with phi(x) = n, The Fibonacci Quarterly, Volume 23, Number 3, August 1985, pp. 265-269.
EXAMPLE
83 is a term because the three solutions (249,332,498) to phi(x) = 164 can be written as (3*83, 4*83, 6*83).
MATHEMATICA
t = Table[ EulerPhi[n], {n, 1, 5000}]; u = Union[ Select[t, Count[t, # ] == 3 &]]; a = {}; Do[k = 1; While[ EulerPhi[3k] != u[[n]], k++ ]; AppendTo[a, k], {n, 1, 60}]; Sort[a]
PROG
(Haskell)
import Data.List.Ordered (insertBag)
import Data.List (groupBy); import Data.Function (on)
a085713 n = a085713_list !! (n-1)
a085713_list = 1 : r yx3ss where
r (ps:pss) | a010051' cd == 1 &&
map (flip div cd) ps == [3, 4, 6] = cd : r pss
| otherwise = r pss where cd = foldl1 gcd ps
yx3ss = filter ((== 3) . length) $
map (map snd) $ groupBy ((==) `on` fst) $
f [1..] a002110_list []
where f is'@(i:is) ps'@(p:ps) yxs
| i < p = f is ps' $ insertBag (a000010' i, i) yxs
| otherwise = yxs' ++ f is' ps yxs''
where (yxs', yxs'') = span ((<= a000010' i) . fst) yxs
-- Reinhard Zumkeller, Nov 25 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Alford Arnold, Jul 19 2003
EXTENSIONS
Edited and extended by Robert G. Wilson v, Jul 19 2003
Nonprimes 343=7^3 and 361=19^2 deleted by Reinhard Zumkeller, Nov 25 2015
STATUS
approved