login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085014
For p = prime(n), a(n) is the number of primes q such that pq is a base-2 pseudoprime; that is, 2^(pq-1) = 1 mod pq.
5
0, 0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 1, 3, 2, 2, 4, 1, 2, 3, 5, 4, 3, 6, 4, 4, 6, 4, 5, 4, 6, 5, 4, 2, 5, 8, 7, 5, 6, 3, 3, 3, 4, 5, 4, 4, 5, 9, 8, 7, 8, 5, 8, 7, 8, 4, 6, 6, 7, 7, 9, 6, 11, 7, 8, 2, 7, 12, 8, 6, 8, 4, 5, 5, 6, 5, 11, 10, 9, 11, 5, 8, 9, 12, 9, 4, 7, 13, 8, 5
OFFSET
2,8
COMMENTS
Using a construction in Erdős's paper, it can be shown that a(prime(n)) > 0, except for the primes 3, 5, 7 and 13. Using a theorem of Lehmer, it can be shown that the possible values of q are among the prime factors of 2^(p-1)-1. The sequence A085012 gives the smallest prime q such that q*prime(n) is a pseudoprime.
Sequence A086019 gives the largest prime q such that q*prime(n) is a pseudoprime.
REFERENCES
Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996, p. 105-112.
LINKS
Paul Erdős, On the converse of Fermat's theorem, Amer. Math. Monthly 56 (1949), p. 623-624.
D. H. Lehmer, On the converse of Fermat's theorem, Amer. Math. Monthly 43 (1936), p. 347-354.
FORMULA
a(n) < 0.7 * p, where p is the n-th prime. - Charles R Greathouse IV, Apr 12 2012
EXAMPLE
a(11) = 3 because prime(11) = 31 and 2^30-1 has 3 prime factors (11, 151, 331) that yield pseudoprimes when multiplied by 31.
MATHEMATICA
Table[p=Prime[n]; q=Transpose[FactorInteger[2^(p-1)-1]][[1]]; cnt=0; Do[If[PowerMod[2, p*q[[i]]-1, p*q[[i]]]==1, cnt++ ], {i, Length[q]}]; cnt, {n, 2, 50}]
CROSSREFS
Cf. A001567 (base-2 pseudoprimes), A085012, A086019, A180471.
Sequence in context: A212620 A194859 A194838 * A082074 A132283 A378682
KEYWORD
nonn
AUTHOR
T. D. Noe, Jun 28 2003
STATUS
approved