login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085012
For p = prime(n), a(n) is the smallest prime q such that pq is a base-2 pseudoprime; that is, 2^(pq-1) = 1 mod pq; a(n) is 0 if no such prime exists.
6
0, 0, 0, 31, 0, 257, 73, 89, 113, 11, 73, 61681, 127, 178481, 157, 233, 1321, 20857, 281, 19, 2731, 13367, 23, 193, 601, 307, 6361, 37, 29, 43, 2731, 953, 168749965921, 593, 31, 53, 2593, 499, 101653, 62020897, 54001, 2281, 97, 19707683773, 5347, 29191
OFFSET
2,4
COMMENTS
Using a construction in Erdős's paper, it can be shown that every odd prime except 3, 5, 7 and 13 is a factor of some 2-factor pseudoprime. Note that the cofactor q can be very large; for p=317, the smallest is 381364611866507317969. Using a theorem of Lehmer, it can be shown that the possible values of q are among the prime factors of 2^(p-1)-1. The sequence A085014 gives the number of 2-factor pseudoprimes that have prime(n) as a factor.
Sequence A086019 gives the largest prime q such that q*prime(n) is a pseudoprime.
REFERENCES
Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996, p. 105-112.
LINKS
EXAMPLE
a(11) = 11 because prime(11) = 31 and 11 is the smallest factor of 2^30-1 that yields a pseudoprime when multiplied by 31.
MATHEMATICA
Table[p=Prime[n]; q=Transpose[FactorInteger[2^(p-1)-1]][[1]]; i=1; While[i<=Length[q] && (PowerMod[2, p*q[[i]]-1, p*q[[i]]]>1), i++ ]; If[i>Length[q], 0, q[[i]]], {n, 2, 56}]
CROSSREFS
Cf. A001567 (base-2 pseudoprimes), A085014, A086019, A180471.
Sequence in context: A324684 A213070 A221432 * A086019 A040968 A040967
KEYWORD
nonn
AUTHOR
T. D. Noe, Jun 28 2003
STATUS
approved