login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084615
a(n) = sum of absolute values of coefficients of (1+x-3x^2)^n.
18
1, 5, 23, 99, 401, 1525, 6345, 27331, 122083, 520805, 2117293, 8301441, 34517395, 147850771, 628707981, 2675100397, 10920387779, 43701876543, 180872758207, 769658883325, 3243501133481, 13617178197183, 56148348498199
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..2*n} abs( Sum_{j=0..k} binomial(n,k-j)*binomial(k-j,j)*(-3)^j ). - G. C. Greubel, Mar 25 2023
MATHEMATICA
Table[Total[Abs[CoefficientList[Expand[(1+x-3x^2)^n], x]]], {n, 0, 30}] (* Harvey P. Dale, Mar 26 2013 *)
PROG
(PARI) for(n=0, 40, S=0; for(k=0, 2*n, t=polcoeff((1+x-3*x^2)^n, k, x); S=S+abs(t)); print1(S", "))
(Magma)
A084614:= func< n, k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*(-3)^j: j in [0..k]]) >;
[(&+[Abs(A084614(n, k)): k in [0..2*n]]): n in [0..50]]; // G. C. Greubel, Mar 25 2023
(SageMath)
@CachedFunction
def A084614(n, k): return sum(binomial(n, k-j)*binomial(k-j, j)*(-3)^j for j in range(k+1))
def A084615(n): return sum(abs(A084614(n, k)) for k in range(2*n+1))
[A084615(n) for n in range(50)] # G. C. Greubel, Mar 25 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 01 2003
STATUS
approved