login
A215038
Partial sums of A066259: a(n) = Sum_{k=0..n} F(k+1)^2*F(k), n>=0, with the Fibonacci numbers F=A000045.
1
0, 1, 5, 23, 98, 418, 1770, 7503, 31779, 134629, 570284, 2415788, 10233404, 43349461, 183631161, 777874251, 3295127934, 13958386366, 59128672790, 250473078515, 1061020985255, 4494557022121, 19039249069560, 80651553307128
OFFSET
0,3
COMMENTS
For a derivation of the explicit form of this sum see the link under A215308 on the partial summation formula, eq. (7).
FORMULA
a(n) = Sum_{k=0..n} A066259(k) = Sum_{k=0..n} F(k+1)^2*F(k), n >= 0, with A066259(0)=0.
a(n) = (F(n+2)*F(n+1)^2 - (-1)^n*F(n) - 1)/2 = (A066258(n+1) - (-1)^n*A008346(n))/2, n >= 0.
O.g.f.: x*(1+x)/((1+x-x^2)*(1-4*x-x^2)*(1-x)) (from A066259).
E.g.f.: (2*exp(-x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2)) + exp(2*x)*(15*cosh(sqrt(15)*x) + 7*sqrt(5)*sinh(sqrt(5)*x)) - 25*exp(x))/50. - Stefano Spezia, Oct 28 2024
EXAMPLE
a(2) = 0 + 1^2*1 + 2^2*1 = 1 + 4 = 5.
KEYWORD
nonn,easy,changed
AUTHOR
Wolfdieter Lang, Aug 09 2012
STATUS
approved