Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Mar 25 2023 08:20:24
%S 1,5,23,99,401,1525,6345,27331,122083,520805,2117293,8301441,34517395,
%T 147850771,628707981,2675100397,10920387779,43701876543,180872758207,
%U 769658883325,3243501133481,13617178197183,56148348498199
%N a(n) = sum of absolute values of coefficients of (1+x-3x^2)^n.
%H G. C. Greubel, <a href="/A084615/b084615.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = Sum_{k=0..2*n} abs( Sum_{j=0..k} binomial(n,k-j)*binomial(k-j,j)*(-3)^j ). - _G. C. Greubel_, Mar 25 2023
%t Table[Total[Abs[CoefficientList[Expand[(1+x-3x^2)^n],x]]],{n,0,30}] (* _Harvey P. Dale_, Mar 26 2013 *)
%o (PARI) for(n=0,40,S=0; for(k=0,2*n,t=polcoeff((1+x-3*x^2)^n,k,x); S=S+abs(t)); print1(S","))
%o (Magma)
%o A084614:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*(-3)^j: j in [0..k]]) >;
%o [(&+[Abs(A084614(n,k)): k in [0..2*n]]): n in [0..50]]; // _G. C. Greubel_, Mar 25 2023
%o (SageMath)
%o @CachedFunction
%o def A084614(n,k): return sum(binomial(n,k-j)*binomial(k-j,j)*(-3)^j for j in range(k+1))
%o def A084615(n): return sum(abs(A084614(n,k)) for k in range(2*n+1))
%o [A084615(n) for n in range(50)] # _G. C. Greubel_, Mar 25 2023
%Y Cf. A002426, A084600 - A084614.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jun 01 2003