login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084611
a(n) = sum of absolute values of coefficients of (1+x-x^2)^n.
6
1, 3, 7, 13, 35, 83, 165, 367, 899, 1957, 3839, 9771, 22709, 43213, 102963, 255061, 525601, 1098339, 2798273, 6202969, 11746259, 29976073, 70898649, 140495779, 314391789, 787757461, 1688887719, 3337986541, 8583687613, 19647782463
OFFSET
0,2
COMMENTS
Limit_{n -> oo} a(n+1)/a(n) does not exist; however, lim_{n -> oo} a(n)^(1/n) = sqrt(5) (conjecture).
LINKS
Vaclav Kotesovec, Asymptotic of sequence A084611, Jul 26 2013.
MATHEMATICA
Table[Sum[Abs[Coefficient[Expand[(1+x-x^2)^n], x, k]], {k, 0, 2*n}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 28 2013 *)
PROG
(PARI) {a(n)=sum(k=0, 2*n, abs(polcoeff((1+x-x^2+x*O(x^k))^n, k)))}
for(n=0, 30, print1(a(n), ", "))
(Magma)
A084610:= func< n, k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*(-1)^j: j in [0..k]]) >;
[(&+[Abs(A084610(n, k)): k in [0..2*n]]): n in [0..50]]; // G. C. Greubel, Mar 26 2023
(SageMath)
def A084610(n, k): return sum(binomial(n, j)*binomial(n-j, k-2*j)*(-1)^j for j in range(k//2+1))
def A084611(n): return 2*sum(abs(A084610(n, k)) for k in range(n)) + abs(A084610(n, n))
[A084611(n) for n in range(50)] # G. C. Greubel, Mar 26 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 01 2003
STATUS
approved